tìm số tự nhiên n thỏa mãn
a) 5(2-3n)+42+3n \(\ge\)0
b) (n+1)2-(n+2)(n-2)\(\le\)1,5
Bài 1: Tìm số tự nhiên n thỏa mãn:
a) 5(2 - 3n) + 42 + 3n\(\ge\)0
b) (n + 1)2 - (n + 2)(n - 2)\(\le\)1,5
a) \(5\left(2-3n\right)+42+3n\ge0\\\)
\(< =>10-15n+42+3n\ge0\)
\(< =>52-12n\ge0\)
\(< =>4\left(13-3n\right)\ge0\)
\(< =>13-3n\ge0\)
\(< =>3n\ge13\)
\(< =>n\ge\frac{13}{3}\)
Mà n là số tự nhiên=> Tập nghiệm của bpt đã cho là: \(\left\{n|n\in N,n\ge4\right\}\)
b) \(\left(n+1\right)^2-\left(n+2\right)\left(n-2\right)\le1,5\)
\(< =>n^2+2n+1-n^2+4\le1,5\)
\(< =>2n+5\le1,5\)
\(< =>2n\le-3,5\)
\(< =>n\le-1,75\)
Mà n là số tự nhiên nên bpt vô nghiệm.
a) 5(2-3n)+42+3n≥0
<=> 10-15n+42+3n≥0
<=>-12n≥-52
<=> n≥\(\frac{52}{12}\) =4,33
Vậy n=4,33
1/ Tìm số tự nhiên n thỏa mãn
a) 5(2-3n) + 42 + 2x ≥ 0
b) ( n + 1)2 - ( n+2)(n-2) ≤ 1,5
2/ tìm số tự nhiên n thỏa mãn đồng thời 2 bất phương trình sau:
4(n+1) + 3n - 6< 19 (1)
(n-3)2 - ( n+4)(n-4) ≤ 43 (2)
giúp mk với
Bài 2: (1) <=> \(4\left(n+1\right)+3n-6< 19\)
<=> \(4n+4+3n-6< 19\)
<=> \(7n-2< 19\)
<=> \(7n< 21\) <=> \(n< 3\) (*)
(2) <=> \(\left(n-3\right)^2-\left(n+4\right)\left(n-4\right)\le43\)
<=> \(n^2-6n+9-n^2+16\le43\)
<=> \(-6n+25\le43\) <=> \(-6n\le18\Leftrightarrow n\le-3\) (**)
Từ (*) và (**) => \(n\le3\) thì mới tìm được mà thỏa mãn 2 phương trình đã cho. Nhưng đề yêu cầu tìm n \(\in\) N nên k có n thỏa mãn
Bài 1: a) Nếu đề bài là:
\(5\left(2-3n\right)+42+2n\ge0\)
\(\Leftrightarrow10-15n+42+2n\ge0\)
\(\Leftrightarrow-13n+52\ge0\Leftrightarrow-13n\ge-52\Leftrightarrow n\ge4\)
Vậy n \(\in\) N nhưng phải lớn hơn 4
bài 1: b)
\(\left(n+1\right)^2-\left(n+2\right)\left(n-2\right)\le1,5\)
\(\Leftrightarrow n^2+2n+1-n^2+4\le1,5\)
\(\Leftrightarrow2n+5̸\le1,5\) \(\Leftrightarrow2n\le-2,5\Leftrightarrow n\le-1,25\)
mà đề yêu cầu tìm số tự nhiện n nên sẽ không có giá trị thỏa mãn
Tìm số tự nhiên n thỏa mãn
a) 5(2−3n)≥−3n−42;
b) n + 1 2 ≤ 3 + ( n + 2 ) ( n − 2 )
tìm số tự nhiên n thỏa mãn:
a)5(2-3n)+42+3n>=0
b)(n+1)2 (n+2)(n+2)<=1.5
\(5\left(2-3n\right)+42+3n\ge0\)
\(\Leftrightarrow\)\(10-15n+42+3n\ge0\)
\(\Leftrightarrow\)\(52-12n\ge0\)
\(\Leftrightarrow\)\(12n\le52\)
\(\Leftrightarrow\)\(n\le\frac{13}{3}\)
Vì \(n\in N\) nên \(n=\left\{0;1;2;3;4\right\}\)
Tìm số tự nhiên n thỏa mãn :
\(a,5\left(2-3n+42+3n\right)\ge0\)
\(b, \left(n+1\right)^2-\left(n-2\right)\left(n+2\right)\le1,5\)
số các số tự nhiên n thỏa mãn: 5(2-3n)+42+3n >=0 la
<=> 10-15n+42+3n \(\ge\) 0
<=> 12n \(\le\) 52 => n \(\le\)52:12=4,333
=> n={1; 2; 3; 4}
số các số tự nhiên thỏa mãn:
3n(2-3n)+42+3n \(\ge\) 0
3n(2 - 3n) + 42 + 3n \(\ge\)0
\(\Leftrightarrow\) - 9n2 + 9n + 42 \(\ge\)0
\(\Leftrightarrow-1,71\le n\le2,72\)
Vì n tự nhiên nên ta có
\(\Rightarrow0\le n\le2\)
Vậy n = 0,1,2
câu 1:số tự nhiên n thỏa mãn 3n+8 chia hết cho n+2 là n=
câu 2:tìm số tự nhiên n khác 1 để 3n+5 chia hết cho n
tick mình đi mình giải choBac Lieu
3n+8 chia hết cho n+2
=>3(n+2)+2 chia hết cho n+2
=>n+2 thuộc Ư(2)={1;2}
+/n+2=1=>n=-1
+/n+2=2=>n=0
vì n thuộc N
nên n=0
câu 2:
3n+5 chia hết cho n
=>5 chia hết cho n
=>n thuộc U(5)={1;5}
vì n khác 1 nên n=5
cho m<n, so sánh:
\(\dfrac{m}{2}-5\) và \(\dfrac{n}{2}-5\)
tìm số tự nhiên n thỏa mãn:
a, 5(2-3n)+42+3n ≥ 0
b, \(\left(n+1\right)^2-\left(n+2\right)\left(n-2\right)\le1,5\)
Ta có: m<n
\(\Leftrightarrow m\times\dfrac{1}{2}< n\times\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{m}{2}< \dfrac{n}{2}\)\(\Leftrightarrow\dfrac{m}{2}+\left(-5\right)=\dfrac{n}{2}+\left(-5\right)\)\(\Leftrightarrow\dfrac{m}{2}-5< \dfrac{n}{2}-5\)
a, \(5\left(2-3n\right)+42+3n\ge0\)
\(\Leftrightarrow10-15n+42+3n\ge0\)
\(\Leftrightarrow52-12n\ge0\Leftrightarrow52\ge12n\Leftrightarrow12n\le52\Leftrightarrow n\le\dfrac{13}{3}\)
Vậy bất phương trình có nghiệm \(n\le\dfrac{13}{3}\)
b, \(\left(n+1\right)^2-\left(n+2\right)\left(n-2\right)\le1,5\)
\(\Leftrightarrow n^2+2n+1-\left(n^2-4\right)\le1,5\)
\(\Leftrightarrow n^2+2n+1-n^2+4\le1,5\)
\(\Leftrightarrow2n+5\le1,5\)\(\Leftrightarrow2n\le-3,5\)\(\Leftrightarrow n\le-1,75\)
Vậy bất phương trình có nghiệm \(n\le-1,75\)