a) \(5\left(2-3n\right)+42+3n\ge0\\\)
\(< =>10-15n+42+3n\ge0\)
\(< =>52-12n\ge0\)
\(< =>4\left(13-3n\right)\ge0\)
\(< =>13-3n\ge0\)
\(< =>3n\ge13\)
\(< =>n\ge\frac{13}{3}\)
Mà n là số tự nhiên=> Tập nghiệm của bpt đã cho là: \(\left\{n|n\in N,n\ge4\right\}\)
b) \(\left(n+1\right)^2-\left(n+2\right)\left(n-2\right)\le1,5\)
\(< =>n^2+2n+1-n^2+4\le1,5\)
\(< =>2n+5\le1,5\)
\(< =>2n\le-3,5\)
\(< =>n\le-1,75\)
Mà n là số tự nhiên nên bpt vô nghiệm.
a) 5(2-3n)+42+3n≥0
<=> 10-15n+42+3n≥0
<=>-12n≥-52
<=> n≥\(\frac{52}{12}\) =4,33
Vậy n=4,33