Cho a=2008/2009 b=2009/2008 c=1/2009 d=2007/2008. Tính a-b+c+d
Bài 1 ; Cho a=2008/2009:b=2009/2008:c=1/2009:d=2007/2008. Tính a-b+c+d
cho a =2008/2009;b=2009/2008;c=1/2009;d=2007/2008.tính a-b+c+d
\(\frac{2008}{2009}-\frac{2009}{2008}+\frac{1}{2009}+\frac{2007}{2008}=\frac{1003}{1004}\)
ai k mình mình k lại,ok
CHO A=\(\frac{2008}{2009};b=\frac{2009}{2008};c=\frac{1}{2009};d=\frac{2007}{2008}\)
tính a - b + c + d
a-b+c+d=\(\frac{2008}{2009}-\frac{2009}{2008}+\frac{1}{2009}+\frac{2007}{2008}=\left(\frac{2008}{2009}+\frac{1}{2009}\right)-\left(\frac{2009}{2008}-\frac{2007}{2008}\right)=1-\frac{2}{2008}=\frac{2006}{2008}=\frac{1003}{1004}\)
\(a-b+c+d=\frac{2008}{2009}-\frac{2009}{2008}+\frac{1}{2009}+\frac{2007}{2008}\)
\(=\left(\frac{2008}{2009}+\frac{1}{2009}\right)+\left(\frac{2007}{2008}-\frac{2009}{2008}\right)=\frac{2009}{2009}+\frac{-2}{2008}\)
\(=1+\frac{-1}{1004}=\frac{1004}{1004}+\frac{-1}{1004}=\frac{1003}{1004}\)
cho a, b, c là ba số thỏa mãn điều kiện: a^2008+b^2008+c^2008=1 và a^2009+b^2009+c^2009=1
tính tổng a^2007+b^2008+c^2009
cho a =\(\frac{2008}{2009}\),b=\(\frac{2009}{2008}\),c=\(\frac{1}{2009}\),d=\(\frac{2007}{2008}\)tính a-b+c+d
\(a+b+c+d=\frac{2008}{2009}+\frac{2009}{2008}+\frac{1}{2009}+\frac{2007}{2008}\\ =\frac{2009}{2009}+\frac{4016}{2008}=1+2=3\)
So sánh
bài 1 :A= 2006/2007-2007/2008+2008/2009-2009/2010
B= -1/2006*2007-1/2008*2009
bài 2: C= 2006/2007+2007/2008+2008/2009+2009/2006 với 4
Cho\(\left\{{}\begin{matrix}a^{2008}+b^{2008}+c^{2008}=1\\a^{2009}+b^{2009}+c^{2009}=1\end{matrix}\right.\). Tính: a2007 + b2008 + c2009 + 2020
Do \(\left\{{}\begin{matrix}a^{2008}\ge0\\b^{2008}\ge0\\c^{2008}\ge0\\a^{2008}+b^{2008}+c^{2008}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^{2008}\le1\\b^{2008}\le1\\c^{2008}\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|a\right|\le1\\\left|b\right|\le1\\\left|c\right|\le1\end{matrix}\right.\)
\(\Rightarrow a^{2009}+b^{2009}+c^{2009}\le a^{2008}+b^{2008}+c^{2008}\)
\(\Rightarrow a^{2009}+b^{2009}+c^{2009}\le1\)
Dấu "=" xảy ra khi và chỉ khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị
Khi đó \(a^{2007}+b^{2008}+c^{2009}+2020=1+2020=2021\)
Cho: a = \(\frac{2008}{2009}\) ; b = \(\frac{2009}{2008}\) ; c = \(\frac{1}{2009}\) ; d = \(\frac{2007}{2008}\)
Tìm : a - b+c+d
Có :\(a-b=\frac{2008}{2009}-\frac{2009}{2008}\)\(=\frac{2008^2-2009^2}{2008\cdot2009}=\frac{\left(2008-2009\right)\left(2008+2009\right)}{2008\cdot2009}\)
\(=\frac{-2008-2009}{2008\cdot2009}=-\frac{1}{2009}-\frac{1}{2008}\)
=>a-b+c+d=\(-\frac{1}{2009}-\frac{1}{2008}+\frac{1}{2009}+\frac{2007}{2008}\)
\(=-\frac{1}{2008}+\frac{2007}{2008}=\frac{2006}{2008}=\frac{1003}{1004}\)
cho A= 2007/2008 + 2008/2009 + 2009/2010
Cho B= 2007 + 2008 +2009/ 2008 + 2009 + 2010
Hãy so sánh A vá B.