Những câu hỏi liên quan
H24
Xem chi tiết
HT
Xem chi tiết
NL
13 tháng 2 2022 lúc 17:13

- Với \(y=0\Rightarrow x^2+x=3^0+1=2\)

\(\Rightarrow x^2+x-2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

- Với \(y< 0\Rightarrow3^{2019y}\) không phải số nguyên \(\Rightarrow3^{2019y}+1\) không phải số nguyên (loại)

- Với \(y>0\Rightarrow3^{2019y}⋮3\Rightarrow3^{2019y}+1\) chia 3 dư 1

Mà \(x^2+x=x\left(x+1\right)\) là tích 2 số nguyên liên tiếp nên chia 3 chỉ có thể dư 0 hoặc 2

\(\Rightarrow x^2+x\ne3^{2019y}+1\) với mọi \(y>0\) \(\Rightarrow\) phương trình ko có nghiệm nguyên

Vậy pt đã cho có đúng 2 cặp nghiệm nguyên là \(\left(x;y\right)=\left(-2;0\right);\left(1;0\right)\)

Bình luận (1)
NH
2 tháng 7 2024 lúc 11:29

@ Ha Dung vì khi y < 0 thì y = -k (k  N)

⇒ 32019y = 3-2019k = ( N)

 ()2019k  không phải là số nguyên vậy 32019không phải là số nguyên em nhé.

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 10 2017 lúc 4:06

nên đường thẳng 3x + 4y - m = 0 là tiếp tuyến của đường tròn (x – 2)2 + (y – 2)2 = 2.

Chọn C.

Bình luận (0)
TB
Xem chi tiết
TD
23 tháng 12 2016 lúc 20:34

Mình gợi ý phần đầu nè. Xét \(x=0\) riêng được \(y=0\) hoặc \(y=1\).

Xét \(x\ne0\). Khi đó  \(x\) và \(x^2+x+1\) nguyên tố cùng nhau với mọi \(x\) nguyên khác 0.

(Ở đây ta chỉ định nghĩa 2 số nguyên tố cùng nhau là 2 số có ước chung lớn nhất là 1 nên số âm vẫn được).

Để CM điều này ta gọi \(d=gcd\left(x^2+x+1,x\right)\) thì \(1⋮d\).

Vế trái là một số chia hết cho 4 nên trong 2 số \(x\) và \(x^2+x+1\) phải có một số chia hết cho 4

(Nếu mỗi số đều chia hết cho 2 thì không thể nguyên tố cùng nhau)

Trường hợp 1: \(x⋮4\) còn \(x^2+x+1\) lẻ.

Do \(y\) và \(y-1\) có 1 số chẵn và 1 số lẻ nên số chẵn sẽ là ước của \(x\) còn số lẻ là ước của \(x^2+x+1\).

Tức là có 2 trường hợp: \(x=4y\) và \(x=4\left(y-1\right)\).

Trường hợp 2 ngược lại.

Tới đây bạn tự giải được nha.

Bình luận (0)
KL
23 tháng 12 2016 lúc 12:38

\(x\left[1+x+x^2\right]=4y\left[y-1\right]\)

\(\Leftrightarrow x^3+x^2-4y^2+x+4y=0\)

\(\Leftrightarrow x^2\left[x+1\right]+x-4y^2+4y=0\)

\(\Leftrightarrow\Delta=b^2-4ac=1-16xy+16xy^2-16y+16y^2\)

\(\Rightarrow\orbr{\begin{cases}x1=\frac{-1+\sqrt{1-16xy+16xy^2-16y+16y^2}}{2x+2}\\x2=\frac{-1-\sqrt{1-16xy+16xy^2-16y+16y^2}}{2x+2}\end{cases}}\)

đến đây tự làm tiếp nhé

Bình luận (0)
PN
6 tháng 3 2018 lúc 20:20

Có:

                                                      (1)

, nên từ  và  chẵn.

Giả sử   lẻ và  

 là số chính phương,  nên  cũng là hai số chính phương.

Do  

Khi , có .

Vậy có hai cặp số nguyên thỏa mãn yêu cầu bài toán là:

Bình luận (0)
TB
Xem chi tiết
PB
Xem chi tiết
CT
1 tháng 5 2019 lúc 7:06

Chọn C.

Phương pháp: Đưa bài toán về tìm m để hệ có nghiệm duy nhất.

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 11 2019 lúc 16:19

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 12 2019 lúc 7:39

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 11 2017 lúc 3:16

Ta có

Cặp số x ; y = 2 ; 2  không thỏa mãn điều kiện .

Tập hợp các cặp số (x;y) thỏa mãn (1) là hình tròn  C1(kể cả biên) tâm I1(2;2) bán kính R 1 = m .

Tập hợp các cặp số (x;y) thỏa mãn (2) là đường tròn C2 tâm I 2 - 1 ; 2  bán kính R 2 = 1 + 4 - 1 = 2 .

Để tồn tại duy nhất cặp số (x;y)  thỏa mãn 2 điều kiện (1)  và (2) Xảy ra 2 trường hợp sau:

TH1: C1;  C2tiếp xúc ngoài 

TH2: C1; C2 tiếp xúc trong và

Vậy  S = - 1 ; 1 .

 

Chọn D.

Bình luận (0)
LD
Xem chi tiết
VB
2 tháng 3 2022 lúc 20:35

\(x^2+6xy+5y^2-4y-8=0\)

\(\Leftrightarrow (x^2+6xy+9y^2)-(4y^2+4y+1)=7\)

\(\Leftrightarrow (x+3y)^2-(2y+1)^2=7\)

\(\Leftrightarrow (x+y-1)(x+5y+1)=7\)

Vì x,y nguyên nên ta có các trường hợp sau:

TH1: \(\begin{cases} x+y-1=1\\ x+5y+1=7 \end{cases} \Leftrightarrow \begin{cases} x+y-1=1\\ 4y+2=6 \end{cases} \Leftrightarrow \begin{cases} x=1\\ y=1 \end{cases}\)

Các TH còn lại bạn tự làm nhé

Bình luận (0)
TH
2 tháng 3 2022 lúc 20:35

\(x^2+6xy+5y^2-4y-8=0\)

\(\Leftrightarrow\left(x^2+6xy+9y^2\right)-4y^2-4y-1-7=0\)

\(\Leftrightarrow\left(x+3y\right)^2-\left(2y+1\right)^2=7\)

\(\Leftrightarrow\left(x+5y+1\right)\left(x+y-1\right)=7=\left[{}\begin{matrix}1.7\\7.1\\\left(-1\right).\left(-7\right)\\\left(-7\right).\left(-1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5y+1=1;x+y-1=7\\x+5y+1=7;x+y-1=1\\x+5y+1=-1;x+y-1=-7\\x+5y+1=-7;x+y-1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=10;y=-2\left(nhận\right)\\x=y=1\left(nhận\right)\\x=y=1\left(nhận\right)\\x=10;y=-2\left(nhận\right)\end{matrix}\right.\)

-Vậy các cặp số (x,y) là \(\left(10;-2\right);\left(1;1\right)\)

 

Bình luận (0)