Cho n\(\inℕ\),CMR:
A=17n+111....1(n chữ số 1)\(⋮\)
Cho n\(\inℕ\),CMR:
A=17n+111...1(n chữ số 1) chia hết cho 9
Tổng các số hạng của A là: 17n+(1+1+...+1)=17n+n = 18n=9.(2n) chia hết cho 9
=> A chia hết cho 9
Cho n thuộc N, chứng minh rằng:
A= 17n+111...111 ( n chữ số 1 ) chia hết cho 9
cho n thuộc N chứng minh rằng : A=17n+111...1(n chữ số 1) chia hết cho 9
A=9n.(111...1+8n)(n chữ số 1) chia hết cho 9
Cho n là số tự nhiên, chứng minh rằng:
A=17n+111...1(n chữ số 1) chia hết cho 9
17n+n-(111..1-n)=18n-(111..11-n)
vì 111..11 và n đều có số dư bằng nhau nên
111..11-n chia hết cho 9=> 17n+111..11 chia hết cho 9
Chứng minh A=17n+ 111...1(n chữ số 1)chia hết cho 9
11....11 có tổng các chữ số là n
Tổng các chữ số của A là n + 17n = 18n chia hết cho 9
Vậy A chia hết cho 9
Cho n \(\in\)N chứng minh rằng
A = 17n+111..1( n chữ số 1 ) chia hết cho 9
Có:
A = 17n + 111...1
A = 17n + n - (111...1 - n)
A = 18n - n (111...1 - n)
Vì 111...1 và n đều có số dư bằng nhau nên 111...1 - n chia hết cho 9
\(\Rightarrow\) 17n + 111...1 chia hết cho 9.
Chúc bạn học tốt!
7n+n-(111..1-n)=18n-(111..11-n)
vì 111..11 và n đều có số dư bằng nhau nên
111..11-n chia hết cho 9=> 17n+111..11 chia hết cho 9
bạn ơi mình nhầm 7n+n câu đâu phải là 17n +n
Cho a=11111........111(2n chữ số 1);b=444...4444(n chữ số 4)
CMR:a+b+1 là số chính phương
Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10n + k
Vì :10n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k2+k+k = 9k2 + 2k
Ta có 444........4<n chữ số 4>=4k
Vậy a+b+1= 9k2 +2k+4k+1 = <3k>2 +2.3k.1 +12 = <3k +1>2
Vậy a+b+1 là một số chính phương
\(a+b=1111....11\left(\text{2n chữ số 1}\right)+44.....444\left(\text{n chữ số 4}\right)=111...111\left(\text{n chữ số 1}\right).\left(1000...05\left(\text{n-1 chữ số 0}\right)\right)=333.....33\left(\text{n chữ số 3}\right).3333....35\left(\text{n-1 chữ số 3}\right)=\left(333..334\left(\text{n-1 chữ số 3}\right)\right)^2-1\Rightarrow a+b+1=333...334^2\text{ là số chính phương đpcm}\)
cho n thuộc N , CMR: A=17 n+1111...1(n chữ số 1) chia hết cho 9
mk giải thế này có đúng ko: tổng các chữ số của 111...1 là n
17n=17+17+...+17(n số 17)=(1+7)+(1+7)+....+(1+7)(n số 1+7)=(1+7).n=n+7n
=> tổng các chữ số của A là:n+7n+n=9n chia hết cho 9
=> A chia hết cho 9
Cho n thuoc N
CMR:
A=17n+111...1(n chu so 1) chia het cho 9
+ Với \(n=1\Rightarrow A=17+1=18⋮9.\)
+ Giả sử với \(n=k\Rightarrow A=17k+111...1⋮9\) (k chữ số 1)
+ Với \(n=k+1\Rightarrow A=17\left(k+1\right)+111...1\) (k+1 chữ số 1)
\(\Rightarrow A=17k+17+10.111...1+1\) (k chữ số 1)
\(\Rightarrow A=\left(17k+111...1\right)+9.111...1+18\)
Ta thấy
\(17k+111...1⋮9\) (k chữ số 1)
\(9.111...1+18⋮9\)
\(\Rightarrow A⋮9\)
Theo nguyên lý phương pháp quy nạp \(\Rightarrow A⋮9\forall n\)