8(x+1/x)^2+4(x^2+1/x^2)^2-4(x^2+1/x^2)(x+1/x)^2=(x+4)^2
8(x+1/x)^2 +4(x^2+1/x^2)^2-4(x^2+1/x^2)^2(x+1/x)^2=(x+4)^2
ta có : 8(x+1/x)2-8(x2+1/x2)= (x+4)2
\(\Leftrightarrow\) 16 = (x+4)2\(\Leftrightarrow\)x=-8;x=0(loại)
8(x + 1/x)^2 +4(x^2 + 1/x^2)^2 -4(x^2 + 1/x^2)(x + 1/x)^2=(x + 4)^2
quy đồng rồi khử mẫu ta đc:
16=x2+8x+16
-x2-8x=0
-x(x+8)=0
-x=0 hoặc x+8=0
x=0 hoặc x=-8
quy đồng rồi khử mẫu ta đc:
16=x2+8x+16
-x2-8x=0
-x(x+8)=0
-x=0 hoặc x+8=0
x=0 hoặc x=-8
Hoàng Tử của dải Ngân Hà đừng chép bài tau nữa
8(x+ 1/x)^2 +4(x^2 + 1/x^2) -4(x^2+ 1/x^2)(x+ 1/x)^2 = (x+4)^2
GPT
8(x+1/x)^2 +4(x^2+1/x^2)^2-4(x^2+1/x^2)^2(x+1/x)^2=(x|+4)^2
8(x+1/x)^2+4(x^2+1/x^2)^2-4(x^2+1/x^2)(x+1/x)^2=(x+4)^2
giải phương trình 8(x+1/x)^2+4(x^2+1/x^2)^2-4(x^2+1/x^2)(x+1/x)^2=(x+4)^2
Giải phương trình: 8(x+1/x)^2 + 4(x^2+1/x^2)^2 - 4(x^2+1/x^2)(x+1/x)^2=(x+4)^2
a, (x+8)^2 - 2(x+8)(x-2)+(x-2)^2
b, x(x-4)(x+4)-(x^2+1)(x^2-1)
c, (x+1)(x^2-x+1)-(x-1)(x^2+x+1)
a) \(\left(x+8\right)^2-2\left(x+8\right)\left(x-2\right)+\left(x-2\right)^2\)
\(=\left[\left(x+8\right)-\left(x-2\right)\right]^2\)
\(=\left(x+8-x+2\right)^2\)
\(=10^2\)
\(=100\)
Tìm x biết 8(x+1/x)^2+4(x^2+1/x^2)^2-4(x^2+1/x^2)(x+1/x)^2=(x+4)^2
\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)ĐKXĐ: \(x\ne0\)
Ta có:
\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left[\left(x^2+\frac{1}{x^2}\right)-\left(x+\frac{1}{x}\right)^2\right]=\left(x+4\right)^2\)
\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right).\left(-2\right)=\left(x+4\right)^2\)
\(\Leftrightarrow8\left[\left(x+\frac{1}{x}\right)^2-\left(x^2+\frac{1}{x^2}\right)\right]=\left(x+4\right)^2\)
\(\Leftrightarrow\left(x+4\right)^2=16\Leftrightarrow x\left(x+8\right)=0\Rightarrow\left[{}\begin{matrix}x=0\left(KTM\right)\\x=-8\left(TM\right)\end{matrix}\right.\)