Chứng tỏ a/b+b/a lớn hơn hoặc bằng 2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a, b là số tự nhiên khác 0, chứng tỏ rằng
a) a/b+b/a lớn hơn hoặc bằng 2
b) (a+b)×(1/a+1/b) lớn hơn hoặc bằng 4
cho a ∈ Z. chứng tỏ rằng a2 lớn hơn hoặc bằng 0; -a2 bé hơn hoặc bằng 0
CMR : a2 lớn hơn hoặc bằng 0
Nếu a là 0 thì a2 = 0
Nếu a ∈ N* thì a2 > 0
☛ Vậy a ∈ N thì a2 ≥ 0
CMR : -a2 bé hơn hoặc bằng 0
Nếu a là 0 thì -a2 = 0
Nếu a ∈ N* thì -a2 < 0
☛ Vậy a ∈ N thì -a2 ≤ 0
*Trường hợp 1: a≠0
Ta có: \(a^2=a\cdot a=\left(-a\right)\cdot\left(-a\right)\)
Vì hai số cùng dấu nhân với nhau luôn ra số dương nên \(a^2>0\forall a\ne0\)(1)
*Trường hợp 2: a=0
Ta có: \(a^2=0^2=0\)
Do đó, \(a^2=0\forall a=0\)(2)
Từ (1) và (2) suy ra \(a^2\ge0\forall a\)
\(-a^2\le0\forall a\)
Chứng tỏ : | a | + | b | lớn hơn hoặc bằng | a + b |
Lời giải:
Ta có:
$(|a|+|b|)^2=|a|^2+|b|^2+2|a|.|b|=a^2+b^2+2|ab|\geq a^2+b^2+2ab=(a+b)^2$
$\Rightarrow \sqrt{(|a|+|b|)^2}\geq \sqrt{(a+b)^2}$
Hay $|a|+|b|\geq |a+b|$
Dấu "=" xảy ra khi $|ab|=ab\Leftrightarrow ab\geq 0$
Chứng tỏ : | a | + | b | lớn hơn hoặc bằng | a + b |
Điều cần chứng minh :
\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\left|a+b\right|=\left|a+b\right|\)
Khi này , a và b có thể nhận với giá trị âm hoặc dương hoặc bằng 0 .
\(\hept{\begin{cases}\left|a\right|\ge0\\\left|b\right|\ge0\end{cases}}\)
Nên chúng chỉ có nhận giá trị lớn hơn hoặc bằng 0 .
\(\Rightarrow\)\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)( đpcm )
Chứng tỏ rằng |a|+|b| lớn hơn hoặc bằng |a+b|
Câu hỏi của Nguyễn Văn Bình
Nhấn vào link đó!
Chúc bạn học tốt!!!
Ta có : | a+ b| = ( +a ) + ( +b) = | a + b |
Mà |a + b| = | a + b |
=> | a| + |b| = | a+b | ( ĐPCM )
Điều cần chứng minh:
\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\left|a+b\right|=\left|a+b\right|\)
Khi này ,a và b có thể nhận với giá trị âm hoặc dương hoặc bằng 0
\(\left\{{}\begin{matrix}\left|a\right|\ge0\\\left|b\right|\ge0\end{matrix}\right.\)
Nên chúng chỉ có nhận giá trị lớn hơn or bằng 0
\(\Rightarrow\left|a\right|+\left|b\right|\ge\left|a+b\right|\rightarrowđpcm\)
Chứng tỏ rằng |a|+|b| lớn hơn hoặc bằng |a+b|
Ta thấy :
|a| + |b| = ( +a ) + ( +b) = | a+b | = | a+b | => ĐPCM
1) cho a,b thuộc Q. chứng tỏ:
a) \(a^2+2ab+b^2\)lớn hơn hoặc bằng 0
b)\(a^2-2ab+b^2\)lớn hơn hoặc bằng 0
a,ta có a^2+2ab+b^2=[a+b]^2 lớn hơn hoặc bằng 0
b, a^2-2ab+b^2=[a-b]^2 lớn hơn hưacj bằng 0
chứng tỏ |a|+|b| lớn hơn hoặc bằng |a+b|
gíá trị tuyệt đối của a lớn b ằng 0 với mọi a
b cũng thế
nên đấu bằng xảy ra khi a=b=0
CHỨNG TỎ: |a|+|b| lớn hơn hoặc bằng |a+b| với mọi a,b thuộc Z
lal + lbl >= la + bl
<=> a2 + 2lallbl + b2 >= a2 + 2ab + b2
<=> lallbl >= ab (đúng với mọi a; b thuộc Z)