Những câu hỏi liên quan
LA
Xem chi tiết
DH
17 tháng 4 2016 lúc 20:26

A=x^3y^2+(2xy-8xy)+(-5+6)+(-x^3y)+x^2

A=x^3y^2+(-6xy)+1+(-x^3y)+x^2

Bậc là 3

B=(2xy-5xy+12xy)+(-8+11)+x^2y^2+4x^2y

B=9xy+3+x^2y^2+4x^2y

Bậc là 2;thay x=-1,y=-1 vào A ta đc

cứ thế ban làm tiếp nha

Bình luận (0)
HA
Xem chi tiết

Đề là gì vậy ???

Bình luận (0)
 Khách vãng lai đã xóa
HQ
21 tháng 7 2021 lúc 7:06

\(B=x\left(x-2\right)\left(x+2\right)-\left(x+3\right)\left(x^2-3x+9\right)\)

\(B=x\left(x^2-4\right)-\left(x^3-3x^2+9x+3x^2-9x+27\right)\)

\(B=x^3-4x-\left(x^3+27\right)\)

\(B=-4x-27\)

Bình luận (0)
 Khách vãng lai đã xóa
HA
20 tháng 7 2021 lúc 22:47

đề là rút gọn ạ

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
SA
14 tháng 6 2021 lúc 14:15

\(A=\dfrac{4x+2\sqrt{x}+2}{2\sqrt{x}+1}=\dfrac{2\sqrt{x}\left(2\sqrt{x}+1\right)+2}{2\sqrt{x}+1}=2\sqrt{x}+\dfrac{2}{2\sqrt{x}+1}\)

\(=2\sqrt{x}+1+\dfrac{2}{2\sqrt{x}+1}-1\ge2\sqrt{\left(2\sqrt{x}+1\right)\cdot\dfrac{2}{2\sqrt{x}+1}}-1=2\sqrt{2}-1\)

=> A \(\ge2\sqrt{2}-1\)

Dấu "=" xảy ra <=> \(2\sqrt{x}+1=\dfrac{2}{2\sqrt{x}+1}\)

<=> \(\left(2\sqrt{x}+1\right)^2=2\) <=> \(\left[{}\begin{matrix}2\sqrt{x}+1=2\\2\sqrt{x}+1=-2\left(loại\right)\end{matrix}\right.\)

<=> \(\sqrt{x}=\dfrac{1}{2}\) <=> \(x=\dfrac{1}{4}\)(tm)

Vậy minA = \(2\sqrt{2}-1\) khi x = 1/4

Bình luận (0)
TP
Xem chi tiết
PA
Xem chi tiết
H9
12 tháng 7 2023 lúc 9:51

a) \(x^2+2xy^3-3z+4xy-5xy^2+2xy-5z\)

\(=x^2+2xy^3-5xy^2-\left(3z+5z\right)+\left(4xy+2xy\right)\)

\(=x^2+2xy^3-5xy^2-8z+6xy\)

b) \(\left(x-3y\right)\left(x^2-3xy+9y^2\right)\)

\(=\left(x-3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]\)

\(=x^3-\left(3y\right)^3\)

\(=x^3-27y^3\)

c) \(\left(2x-y\right)\left(2x+y\right)\)

\(=\left(2x\right)^2-y^2\)

\(=4x^2-y^2\)

d) \(\left(3x-y\right)\left(2y+5\right)-16x4y\)

\(=6xy+15x-2y^2-5y-64xy\)

\(=-58xy+15x-2y^2-5y\)

Bình luận (0)
NT
12 tháng 7 2023 lúc 9:51

Bạn xem lại đề bài nhé!

Bình luận (0)
KH
Xem chi tiết
H24
Xem chi tiết
AH
13 tháng 12 2022 lúc 23:00

Lời giải:
$\frac{xy+3x-2y-6}{y+3}=3$

$\Rightarrow xy+3x-2y-6=3y+9$

$\Rightarrow xy+3x-5y-15=0$

$\Rightarrow x(y+3)-5(y+3)=0$

$\Rightarrow (y+3)(x-5)=0$

$\Rightarrow y+3=0$ hoặc $x-5=0$

Mà $y$ tự nhiên nên $y+3>0$. Do đó $x-5=0$

$\Rightarrow x=5$

Vậy $x=5$ và $y$ là số tự nhiên tùy ý.

Bình luận (0)
HH
Xem chi tiết
LY
13 tháng 9 2018 lúc 23:23

không khó quá.

Bình luận (0)
HH
13 tháng 9 2018 lúc 23:32

giải giúp mik cái

Bình luận (0)
HP
Xem chi tiết
LF
19 tháng 9 2016 lúc 21:22

\(hpt\Leftrightarrow\begin{cases}y=\frac{60x^2}{36x^2+25}\\z=\frac{60y^2}{36y^2+25}\\x=\frac{60z^2}{36z^2+25}\end{cases}\)

Từ hệ suy ra x,y,z không âm. Nếu x=0 thì y=z=0 suy ra (0;0;0) là nghiệm của hệ phương trình.

Nếu x>0 thì y>0, z>0. Xét hàm số \(f\left(t\right)=\frac{60t^2}{36t^2+25},t>0\)

Ta có: \(f'\left(t\right)=\frac{3000t}{\left(36t^2+25\right)^2}>0\) với mọi t>0

Do đó \(f\left(t\right)\) đồng biến trên khoảng \(\left(0;+\infty\right)\)

Hệ pt đc viết lại \(\begin{cases}y=f\left(x\right)\\z=f\left(y\right)\\x=f\left(z\right)\end{cases}\)

Từ tính đồng biến của f(x) suy ra x=y=z. Thay vào hệ ta được

x(36x2-60x+25)=0. Chọn \(x=\frac{5}{6}\)

Vậy tập nghiệm của hệ pt là \(\left\{\left(0;0;0\right);\left(\frac{5}{6};\frac{5}{6};\frac{5}{6}\right)\right\}\)

Bình luận (2)