Lời giải:
Từ ĐKĐB suy ra:
$-x^2+5xy+2y^2=3(x^2+y^2)$
$\Leftrightarrow 4x^2-5xy+y^2=0$
$\Leftrightarrow 4x(x-y)-y(x-y)=0$
$\Leftrightarrow (4x-y)(x-y)=0$
$\Rightarrow 4x=y$ hoặc $x=y$.
Nếu $4x=y$. Thay vô PT $(1)$ thì:
$x^2+(4x)^2=1\Rightarrow x=\pm \frac{1}{\sqrt{17}}$
$\Rightarrow x=\pm \frac{4}{\sqrt{17}}$ (tương ứng)
Trường hợp $x=y$ tương tự, ta tìm được $(x,y)=(\pm \frac{1}{\sqrt{2}}; \pm \frac{1}{\sqrt{2}})$
Đúng 1
Bình luận (0)