\(\frac{n+1}{n-2}\)[n thuộc z, n ko bằng 2]
tính n
cho phân số A=n-5/n-3(n thuộc Z)
B=n-1/n+2(n thuộc Z, n không bằng -2)
C=n+2/n-5(n thuộc Z, n ko bằng 5)
tìm n để A,B,C có giá trị nguyên
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}n-5⋮n-3\\n-1⋮n+2\\n+2⋮n-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n-3\in\left\{1;-1;2;-2\right\}\\n+2\in\left\{1;-1;3;-3\right\}\\n-5\in\left\{1;-1;7;-7\right\}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n\in\left\{4;2;5;1\right\}\\n\in\left\{-1;-3;1;-5\right\}\\n\in\left\{6;4;12;-2\right\}\end{matrix}\right.\Leftrightarrow n\in\varnothing\)
cho P= n+4/2n-1 (n thuộc Z)
a)tìm n thuộc Z để P là số nguyên tố
b)chứng tỏ với n tìm được ở thì P =2n+13/n+2 (n ko bằng -2)
hoặc P = n3 /n (n ko bằng -2)
(giúp mình nhanh nha!)
A=\(\frac{3}{n-2}\)với n thuộc Z
a) n phải có điều kiện gì để A là phân số
b)tính A khi n=-2;n=0;n=5
c) tìm số nguyên n để A có giá trị bằng 1;\(\frac{1}{2}\)
d)tìm n để A thuộc Z
a, \(ĐK:\text{ }n-2\ne0\Leftrightarrow n\ne2\)
b, \(A=\frac{3}{n-2};\text{ }n=-2\)
\(\Rightarrow A=\frac{3}{-2-2}=\frac{3}{-4}\)
\(A=\frac{3}{n-2}\text{; }n=0\)
\(\Rightarrow A=\frac{3}{0-2}=\frac{3}{-2}\)
\(A=\frac{3}{n-2};\text{ }n=5\)
\(\Rightarrow A=\frac{3}{5-2}=\frac{3}{3}=1\)
c, \(A=\frac{3}{n-2}=1\Leftrightarrow n-2=\frac{3}{1}\)
\(\Rightarrow n-2=3\)
\(\Rightarrow n=3+2\)
\(\Rightarrow n=5\)
\(A=\frac{3}{n-2}=\frac{1}{2}\Leftrightarrow n-2=3:\frac{1}{2}\)
\(\Rightarrow n-2=6\)
\(\Rightarrow n=6+2\)
\(\Rightarrow n=8\)
d, \(A\inℤ\text{ }\Leftrightarrow\text{ }3⋮n-2\)
\(\Rightarrow n-2\inƯ\left(3\right)\)
\(\Rightarrow n-2\in\left\{-1;1;-3;3\right\}\)
\(\Rightarrow n\in\left\{1;3;-1;5\right\}\)
a)để A là phân số thì n-2 phải khác 0 =>n phải khác 2
b)+)n=-2
=>A=\(\frac{3}{-2-2}\)=\(\frac{3}{-4}\)
+)n=0
=>A=\(\frac{3}{0-2}=\frac{3}{-2}\)
+)n=5
=>A=\(\frac{3}{5-2}=\frac{3}{3}=1\)
c) theo như kết quả phần b thì để A=1 thì n phải =5
để A=\(\frac{1}{2}\)thì \(\frac{3}{n-2}=\frac{1}{2}\)=>\(\frac{3}{n-2}=\frac{3}{6}\)=>n-2=6=>n=6+2=>n=8
để A thuộc Z thì n-2 phải <0 =>n phải bé hơn 2 để n thuộc Z
CMR:
\(\frac{1.3.5....\left(2.n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)...2.n}=\frac{1}{2^n}\) với n thuộc Z
dấu . là nhân
lưu ý: ko ghi CHTT hay ko liên quan đến bài toán này
Ta có :
\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n}.\frac{2.4.6...2n}{2.4.6...2n}=\frac{1.2.3...\left(2n-1\right).2n}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n.\left(2.4.6...2n\right)}=\frac{1.2.3...\left(2n-1\right).2n}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n.2^n.\left(1.2.3...n\right)}=\frac{1}{2^n}\)
M=n-1/n-2 ( n thuộc Z; n ko thuộc 2 ) là phân số tối giản (help me)
làm ơn giải giúp mình, lời giải tri tiết hay mỗi đáp án ko cũng đc, please
cho H = \(\frac{n-1}{3n-6}\)(n ko =2). Tìm n thuộc Z để H là số nguyên
Chứng minh rằng: 1,71 < \(1+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{n!}\)<1,72. Với mọi n thuộc Z, n khác 0, n lớn hơn hoặc bằng 5
giúp em với!!! tối sáng mai em phải đi học rồi ạ!
Bài 1 : \(x+\frac{5}{6}-\frac{1}{2}=\frac{-3}{7}\) (Gía trị tuyệt đối của x + 5/6 nha mik ko biết cách viết trị tuyệt đối )
Bài 2 : Tìm m,n thuộc N biết:
a, B= \(\frac{2n+9}{n+2}-\frac{3n}{n+2}+\frac{5n+17}{n+2}\)thuộc Z
b,\(\frac{m}{5}-\frac{2}{n}=\frac{2}{15}\)
Mk sắp phải đi hc rồi, làm câu đầu thôi nha.
Bài 1:
Ta có: \(\left|x+\frac{5}{6}\right|-\frac{1}{2}=\frac{-3}{7}\)
\(\Rightarrow\left|x+\frac{5}{6}\right|=\frac{1}{14}\)
\(\Rightarrow x+\frac{5}{6}=\frac{1}{14}\) hoặc \(x+\frac{5}{6}=\frac{-1}{14}\)
Với \(x+\frac{5}{6}=\frac{1}{14}\Rightarrow x=\frac{-16}{21}\)
Với \(x+\frac{5}{6}=\frac{-1}{14}\Rightarrow x=\frac{-19}{21}\)
Vậy \(x=\frac{16}{21}\) hoặc \(x=\frac{-19}{21}\).
Tìm n thuộc Z, biết
\(\frac{3}{n-2}\)thuộc Z
\(\frac{n}{n-1}\)thuộc Z
Ta có :
\(\frac{3}{n-2}\in Z\)
\(\Rightarrow n-2\inƯ\left(3\right)\)
\(Ư\left(3\right)=\){\(-3;-1;1;3\)}
Nếu x - 2 = -3 \(\Rightarrow\)x = -1.Nếu x -2 = -1 \(\Rightarrow\)x = 1.Nếu x - 2 = 1 \(\Rightarrow\)x = 3Nếu x - 2 = 3 \(\Rightarrow\)x = 5.\(\Rightarrow x\in\){ \(-1;1;3;5\)}
b, Để \(\frac{n}{n-1}\in Z\)
\(\Rightarrow\)\(n-1\ne0+1\Leftrightarrow n\ne1\)
\(\Rightarrow n-1\inƯ\left(n\right)\)...