Tìm x là số nguyên
\(\dfrac{x+46}{20}=x\dfrac{2}{5}\)(\(x\dfrac{2}{5}\)là hỗn số)
Tìm số nguyên x, y biết:
a, \(\dfrac{-1}{5}\)≤ \(\dfrac{x}{8}\)≤ \(\dfrac{1}{4}\)
b, \(\dfrac{4}{x-6}\)= \(\dfrac{y}{24}\)= \(\dfrac{-12}{18}\)
c, \(\dfrac{x+46}{20}\)=x \(\dfrac{2}{5}\)
Giải:
a) \(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\)
\(\Rightarrow\dfrac{-8}{40}\le\dfrac{5x}{40}\le\dfrac{10}{40}\)
\(\Rightarrow5x\in\left\{0;\pm5;10\right\}\)
\(\Rightarrow x\in\left\{0;\pm1;2\right\}\)
b) \(\dfrac{4}{x-6}=\dfrac{y}{24}=\dfrac{-12}{18}\)
\(\Rightarrow\dfrac{4}{x-6}=\dfrac{-12}{18}\)
\(\Rightarrow-12.\left(x-6\right)=4.18\)
\(\Rightarrow-12x+72=72\)
\(\Rightarrow-12x=72-72\)
\(\Rightarrow-12x=0\)
\(\Rightarrow x=0:-12\)
\(\Rightarrow x=0\)
\(\Rightarrow\dfrac{y}{24}=\dfrac{-12}{18}\)
\(\Rightarrow y=\dfrac{-12.24}{18}=-16\)
c) \(\dfrac{x+46}{20}=x.\dfrac{2}{5}\)
\(\dfrac{x+46}{20}=\dfrac{2x}{5}\)
\(\Rightarrow5.\left(x+46\right)=2x.20\)
\(\Rightarrow5x+230=40x\)
\(\Rightarrow5x-40x=-230\)
\(\Rightarrow-35x=-230\)
\(\Rightarrow x=-230:-35\)
\(\Rightarrow x=\dfrac{46}{7}\)
Chúc bạn học tốt!
Tìm các số nguyên x,y biết:
a)\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
b) \(\dfrac{24}{7x-3}=\dfrac{-4}{25}\)
c) \(\dfrac{4}{x-6}=\dfrac{y}{24}=\dfrac{-12}{18}\)
d) \(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\)
e) \(\dfrac{x+46}{20}=x\dfrac{2}{5}\)
f) \(y\dfrac{5}{y}=\dfrac{86}{y}\) ( \(x\dfrac{2}{5};y\dfrac{5}{y}\) là các hỗn số)
a,\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
⇒\(\dfrac{6}{2x+1}=\dfrac{6}{21}\)
⇒\(2x+1=21\)
\(2x=21-1\)
\(2x=20\)
⇒\(x=10\)
bài 1
a> Tính giá tị của biểu thức A=\(x^2-3x+1\) khi \(\left|x+\dfrac{1}{3}\right|=\dfrac{2}{3}\)
b> Tìm x biết: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)
Bài 2
a> Tìm các số x,y thỏa mãn: \(\dfrac{x-1}{3}=\dfrac{y+2}{5}=\dfrac{x+y+1}{x-2}\)
b> Cho x nguyên, tìm giá trị lớn nhất của biểu thức sau: A=\(\dfrac{2x+1}{x-3}\)
c> Tìm số có 2 chữ số \(\overline{ab}\) biết: \(\left(\overline{ab}\right)^2\)=\(\left(a+b\right)^3\)
\(\overline{ab}\)
Bài 1:
b) ĐKXĐ: \(x\ne3\)
Ta có: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\dfrac{x-3}{-20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\left(x-3\right)^2=100\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\left(nhận\right)\\x=-7\left(nhận\right)\end{matrix}\right.\)
Vậy: \(x\in\left\{13;-7\right\}\)
\(x=\dfrac{1}{2}-\dfrac{2}{3}=\dfrac{3-4}{6}=-\dfrac{1}{6}\) là phương án c
Cho biểu thức
𝑃 = \(\dfrac{1}{\sqrt{x-1}}-\dfrac{x\sqrt{x}-\sqrt{x}}{x+1}\left(\dfrac{1}{x-2\sqrt{x+1}}+\dfrac{1}{1-x}\right)\)
1. Rút gọn biểu thức P. Tìm x để 𝑃 = \(-\dfrac{2}{5}\)
2. Tìm x nguyên để \(\sqrt{x}\), \(\dfrac{1}{p}\) cũng là số nguyên.
ai giúp mình với ạ , mình cảm ơn nhiều
1) Ta có: \(P=\dfrac{1}{\sqrt{x}-1}-\dfrac{x\sqrt{x}-\sqrt{x}}{x+1}\left(\dfrac{1}{x-2\sqrt{x}+1}+\dfrac{1}{1-x}\right)\)
\(=\dfrac{1}{\sqrt{x}-1}-\dfrac{\sqrt{x}\left(x-1\right)}{x+1}\cdot\left(\dfrac{\sqrt{x}+1-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{1}{\sqrt{x}-1}-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{x+1}\cdot\dfrac{2}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\)
\(=\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(x+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{x+1}\)
Để \(P=-\dfrac{2}{5}\) thì \(\dfrac{\sqrt{x}-1}{x+1}=\dfrac{-2}{5}\)
\(\Leftrightarrow-2x-2=5\sqrt{x}-5\)
\(\Leftrightarrow-2x-2-5\sqrt{x}+5=0\)
\(\Leftrightarrow-2x-5\sqrt{x}+3=0\)
\(\Leftrightarrow-2x-6\sqrt{x}+\sqrt{x}+3=0\)
\(\Leftrightarrow-2\sqrt{x}\left(\sqrt{x}+3\right)+\left(\sqrt{x}+3\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(-2\sqrt{x}+1\right)=0\)
\(\Leftrightarrow-2\sqrt{x}+1=0\)
\(\Leftrightarrow-2\sqrt{x}=-1\)
\(\Leftrightarrow x=\dfrac{1}{4}\)(thỏa ĐK)
tìm các số nguyên x,y biết
\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
\(\dfrac{24}{7x-3}=\dfrac{-4}{25}\)
\(\dfrac{4}{x-6}=\dfrac{y}{24}=\dfrac{-12}{18}\)
\(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\)
\(\dfrac{x+46}{20}=x\dfrac{2}{5}\)
\(y\dfrac{5}{y}=\dfrac{56}{y}\) \(\left(x\dfrac{2}{5};y\dfrac{5}{y}\right)\) là các hỗn số
\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
=> 2(2x+1) = 6.7
4x+2=42
4x=40
x=10
Vậy x=10
a)\(\dfrac{6}{2x+1}=\dfrac{2}{7}\\ =>6.7=2.\left(2x+1\right)\\ =>2x+1=\dfrac{6.7}{2}=\dfrac{42}{2}=21\\ =>2x=21-1=20\\ =>x=\dfrac{20}{2}=10\)
b) \(\dfrac{24}{7x-3}=-\dfrac{4}{25}\\ =>24.25=-4.\left(7x-3\right)\\ =>7x-3=\dfrac{24.25}{-4}=-150\\ =>7x=-150+3=-147\\ =>x=\dfrac{-147}{7}=-21\)
c) \(\dfrac{4}{x-6}=\dfrac{y}{24}=-\dfrac{12}{18}\\ =>x-6=\dfrac{4.18}{-12}=-6\\ =>x=-6+6=0\\ y=\dfrac{-12.24}{18}=-16\)
d) \(-\dfrac{1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\\ < =>-\dfrac{8}{40}\le-\dfrac{5x}{40}\le\dfrac{10}{40}\\ =>-8\le-5x\le10\\ Mà:-8< -5.1< -5.0< -5.\left(-1\right)< -5.\left(-2\right)=10\\ =>x\in\left\{-2;-1;0;1\right\}\)
e) \(\dfrac{x+46}{20}=x\dfrac{2}{5}\\ < =>\dfrac{x+46}{20}=\dfrac{5x+2}{5}\\ =>5\left(x+46\right)=20\left(5x+2\right)\\ < =>5x+230=100x+40\\ < =>230-40=100x-5x\\ < =>190=95x\\ =>x=\dfrac{190}{95}=2\)
f) \(y\dfrac{5}{y}=\dfrac{56}{y}\\ < =>\dfrac{y^2+5}{y}=\dfrac{56}{y}\\ =>y\left(y^2+5\right)=56y\\ =>y^2+5=\dfrac{56y}{y}=56\\ =>y^2=56-5=51\\ =>y=\sqrt{51}\)
\(\dfrac{24}{7x-3}=\dfrac{-4}{25}\)
\(\Rightarrow\left(7x-3\right).\left(-4\right)=24.25\)
\(\Rightarrow-28x+12=600\)
\(\Rightarrow-28x=600-12=588\)
\(\Rightarrow\)\(x=588:\left(-28\right)=-21\)
Vậy \(x=-21\)
TÌm số nguyên x biết ( có các bước giải )
a \(\dfrac{x}{2}\) = \(\dfrac{2}{x}\) ; b \(\dfrac{x}{-5}\) = \(\dfrac{-5}{x}\)
a) \(\dfrac{x}{2}=\dfrac{2}{x}\)
⇔ \(x^2=4\)
⇒ \(\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
b) \(\dfrac{x}{-5}=\dfrac{-5}{x}\)
⇔ \(x^2=25\)
⇒ \(\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
\(a,\Rightarrow x^2=2^2\\ \Rightarrow x=2\\ b,x^2=\left(-5\right)^2\\ \Rightarrow x=-5\)
a: =>x2=4
hay \(x\in\left\{2;-2\right\}\)
b: =>x2=25
hay \(x\in\left\{5;-5\right\}\)
Tìm số nguyên x, sao cho phân số \(\dfrac{x+5}{x-2}\)là một số nguyên
Ta có:
\(\dfrac{x+5}{x-2}=\dfrac{x-2+7}{x-2}=\dfrac{x-2}{x-2}+\dfrac{7}{x-2}=1+\dfrac{7}{x-2}\)
Để \(\dfrac{x+5}{x-2}\) là một số nguyên thì \(\dfrac{7}{x-2}\) phải nguyên
\(\Rightarrow7\) ⋮ \(x-2\)
\(\Rightarrow x-2\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{3;1;9;-5\right\}\)
Tìm x,biết: \(\dfrac{x-5}{x-2}\) là số nguyên
\(\dfrac{x-5}{x-2}=\dfrac{x-2-3}{x-2}=1-\dfrac{-3}{x-2}\)
để `(x-5)/(x-2)` là số nguyên thì -3 phải chia hết cho x-2
=> x-2 thuộc ước của -3
ta có bảng sau
x-2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
vậy \(x\in\left\{3;1;5;-1\right\}\)
Ta có: `(x-5)/(x-2) = (x-2-3)/(x-2) = 1 - 3/(x-2)`
Để `(x-5)/(x-2)` là số nguyên thì `3/(x-2) ∈ Z`
`=> x - 2 ∈ Ư(3) = {-3;-1;1;3}`
`=> x∈ {-1;1;3;5}`
Vậy `(x-5)/(x-2)` là số nguyên khi `x ∈ {-1;1;3;5}`
Để \(\dfrac{x-5}{x-2} \) ∈ Z thì x-5 ⋮ x-2
Mà x-2 ⋮ x-2
=> (x-5)-(x-2) ⋮ x-2 => -3 ⋮ x-2
Mà x ∈ Z => x-2 ∈ Z
=> x-2 ∈ {1; 3; -1; -3}
=> x ∈ {3; 5; 1; -1}
Thử lại thỏa mãn.
Vậy x ∈ {3; 5; 1; -1}