Cho M=\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) với a;b;c >0
a)CM: M>1
b)CM: M ko là số nguyên
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho:\(\frac{a}{b+c}=\frac{b}{c+a}\frac{c}{a+b}\) Tính \(Q=\frac{a+2b}{c}+\frac{b+2c}{a}+\frac{c+2a}{b}\)
và \(M=\frac{a+5b}{c}+\frac{b+5c}{a}+\frac{c+5a}{b}\)với a,b,c>0
Áp dụng t/c dãy tỉ số bằng nhau ta được:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}2a=b+c\\2b=c+a\\2c=a+b\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=a+b+c\\3b=a+b+c\\3c=a+b+c\end{cases}}\Rightarrow a=b=c\)
Thay vào ta được:
\(Q=\frac{a+2b}{c}+\frac{b+2c}{a}+\frac{c+2a}{b}=\frac{3c}{c}+\frac{3a}{a}+\frac{3b}{b}=9\)
\(M=\frac{a+5b}{c}+\frac{b+5c}{a}+\frac{c+5a}{b}=\frac{6c}{c}+\frac{6a}{a}+\frac{6b}{b}=18\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\) ( Với a,b,c,d khác 0)
Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+d}+\frac{d+a}{b+c}\)
\(Cho\)\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)với a, b, c là các số nguyên dương.
Chứng minh:
\(M=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)không là số nguyên.
Ta có: \(\frac{a}{b+c}>\frac{a}{a+b+c}\)
\(\frac{b}{c+a}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)(1)
Lại có: \(\frac{a}{b+c}< \frac{a+b}{a+b+c}\)
\(\frac{b}{c+a}< \frac{b+c}{a+b+c}\)
\(\frac{c}{a+b}< \frac{c+a}{a+b+c}\)
\(\Rightarrow M< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(2)
Từ (1);(2) => 1 < M < 2 => đpcm
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)( với\(a,b,c,d\ne0\)) Tính giá trị của biểu thức :
\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Giúp mik với !!!!
# Hy
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{a+b+c+d}=1\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=1\)
\(\Rightarrow a=b=c=d\)
Khí đó:
\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(M=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=4\)
Vậy M = 4
Cho dãy tỉ số bằng nhau :
\(\frac{2019a+b+c+d}{a}=\frac{a+2019b+c+d}{b}=\frac{a+b+2019c+d}{c}=\frac{a+b+c+2019d}{d}\)
Tính : \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{b+a}+\frac{d+a}{b+c}\)
giúp mình với mình cần gấp
Áp dụng TC của dãy tỉ số bằng nhau , ta có :
\(\frac{2019a+b+c+d}{a}=\frac{a+2019b+c+d}{b}=\frac{a+b+2019c+d}{c}=\frac{a+b+c+2019d}{d}\)
\(=\frac{\left(2019a+a+a+a\right)+\left(2019b+b+b+b\right)+\left(2019c+c+c+c\right)+\left(2019d+d+d+d\right)}{a+b+c+d}\)
\(=\frac{2022\left(a+b+c+d\right)}{a+b+c+d}=2022\)
Xét a + b + c + d =0
=> ( a + b ) = - ( c + d ) ; ( b + c ) = - ( a + d ) ; ( c + d ) = - ( a + b ) ; (a + d ) = - ( b + c )
\(\Rightarrow M=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{d+a}+\frac{-\left(a+b\right)}{b+a}+\frac{-\left(a+d\right)}{b+c}\)
\(M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
Xét a + b + c + d khác 0
=> a = b = c = d
=> M = 1 + 1 + 1 + 1 = 4
Vậy .....................
Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) với a, b, c ≠ 0 và M = \(\frac{b^2c^2}{a}+\frac{c^2a^2}{b}+\frac{a^2b^2}{c}\)
CMR M = 3abc
cho M = \(\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{b+c+d}+\frac{d}{a+c+d}\) với a, b, c, d \(\in\)N*
Do a;b;c và d là các số nguyên dương =>
a + b + c < a + b + c + d
a + b + d < a + b + c + d
a + c + d < a + b + c + d
b + c + d < a + b + c + d
=> a/(a + b + c) > a/(a + b + c + d) (1)
b/(a + b + d) > b/(a + b + c + d) (2)
c/(b + c + d) > c/(a + b + c + d) (3)
d/(a + c + d) > d/(a + b + c + d) (4)
Từ (1);(2);(3) và (4)
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > a/(a + b + c + d) + b/(a + b + c + d) + c/(a + b + c + d) + d/(a + b + c + d)
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > (a + b + c + d)/(a + b + c + d)
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > 1
=> M > 1 (*)
Ta có: (a + b + c)(a + d) - a(a + b + c + d)
= a² + ad + ab + bd + ac + cd - (a² + ab + ac + ad)
= a² + ad + ab + bd + ac + cd - a² - ab - ac - ad
= bd + cd
Do a;b;c và d là số nguyên dương
=> bd + cd > 0
=> (a + b + c)(a + d) - a(a + b + c + d) > 0
=> (a + b + c)(a + d) > a(a + b + c + d)
=> (a + d)/(a + b + c + d) > a/(a + b + c) (5)
Chứng minh tương tự ta được:
(b + c)/(a + b + c + d) > b/(a + b + d) (6)
(a + c)/(a + b + c + d) > c/(b + c + d) (7)
(b + d)/(a + b + c + d) > d/(a + c + d) (8)
Cộng vế với vế của (5);(6);(7) và (8) ta được:
(a + d)/(a + b + c + d) + (b + c)/(a + b + c + d) + (a + c)/(a + b + c + d) + (b + d)/(a + b + c + d) > a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d)
=> (a + d + b + c + a + c + b + d)/(a + b + c + d) > M
=> 2(a + b + c + d)/(a + b + c + d) > M
=> 2 > M (*)(*)
Từ (*) và (*)(*)
=> 1 < M< 2
=> M không phải là số nguyên
Cho \(M=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{b+c+d}+\frac{d}{a+c+d}\) với a,b,c,d thuộc N*
Chứng minh M không nhận giá trị là số tự nhiên
Ta có: \(a,b,c,d\in N^{\times}\)nên:
\(\Rightarrow a+b+c< a+b+c+d\)
\(\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
Tương tự ta có: \(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
Và: \(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)
Và: \(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)
\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)
Lại có: \(a,b,c,d\in N^{\times}\) nên:
\(\Rightarrow a+b+c>a+b\)
\(\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)
Tương tự ta có: \(\frac{b}{a+b+d}< \frac{b}{a+b}\)
Và: \(\frac{c}{a+c+d}< \frac{c}{c+d}\)
Và: \(\frac{d}{b+c+d}< \frac{d}{c+d}\)
\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)
Vậy \(1< M< 2\) nên \(M\) không phải số tự nhiên.
1. Cho \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) . Tính giá trị của biểu thức P=\(\frac{y+z-x}{x-y+z}\)
2.Cho dãy tỉ số bằng nhau\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{b+c+a}\). Tính giá trị của biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
3.Cho a, b, c đôi một khác nhau và thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\).Tính giá trị của biểu thức P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
CÁC BẠN GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP !!!!!!!!!!!!!!!!! HELP ME !!!!!!!!!!!