tính tổng 100 số hạng đầu tiên của các dãy sau:
1/1.2, 1/2.3, 1/3.4, 1/4.5,...
Tính tổng 100 số hạng đầu của các dãy số sau:
a)1/1.2 ; 1/2.3 ; 1/3.4 ; 1/4.5 ; ....
tính tổng 100 số hạng đầu tiên của các dãy sau:
a)\(\frac{1}{1.2},\frac{1}{2.3},\frac{1}{3.4},\frac{1}{4.5},...\)
b)\(\frac{1}{6},\frac{1}{66},\frac{1}{176},\frac{1}{336},...\)
Thừa số thứ nhất của mẫu số của phân số thứ 100 là:
\(\left(100-1\right):1+1=100\)
=> Mẫu số của phân số thứ 100 là 100.101
Tổng 100 số hạng đầu tiên:
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
b) Ta xét mẫu số của các số hạng trong dãy :
6 = 1.6
66 = 6.11
176 = 11.16
336 = 16.21
........
Thừa số thứ nhất của mẫu của phân số thứ 100 của dãy là:
\(\left(100-1\right).5+1=496\)
=> Mẫu của phân số thứ 100 là 496.501.
Tính tổng 100 số hạng đầu:
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{496.501}\)
\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{496}-\frac{1}{501}\)
\(=1-\frac{1}{501}=\frac{500}{501}\)
cho dãy số: 1/1.2 ;1/2.3 ;1/3.4
tính tổng của 2005 số hạng đầu tiên của dãy số trên
Đặt tổng của 2005 số hạng đầu tiên của dãy là S
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{2005.2006}\)
\(S=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+..+\frac{2006-2005}{2005.2006}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{2005}-\frac{1}{2006}\)
\(S=1-\frac{1}{2006}=\frac{2005}{2006}\)
Tổng 80 phân số đầu tiên trong dãy 1 /1.2 ; 1/ 2.3 ; 1/ 3.4 ; 1/ 4.5 ; ... bằng
Số thứ 80 là 1/80*81
1/1*2+1/2*3+...+1/80*81
=1-1/2+1/2-1/3+...+1/80-1/81
=1-1/81
=80/81
Tính tổng của 100 số hạng đầu tiên của dãy số sau:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
ko ghi lại đề bài
=1/1-1/2+1/2-1.3+...+1/99-1/100
=1/1-1/100
=99/100
hc tốt
ko ghi lại đề
=1/1-1/2+1/2-1/3+...+1/99-1/100
=1/1-1/100
=99/100
A=1-1/2+1/2-1/3+...+1/99-1/100
A=1-1/100
A=99/100
1) Tính tổng 100 số hạng đầu tiên của các dãy sau
a 1/1.2, 1/2.3, 1/3.4, 1/4.5,..............
b 1/6, 1/66, 1/176, 1/336,.......
tính số hạng 100 của dãy sau:
\(\frac{1}{1.2},\frac{1}{2.3},\frac{1}{3.4},\frac{1}{4.5},...\)
\(\frac{1}{6},\frac{1}{66},\frac{1}{176},\frac{1}{336},...\)
*Số thứ 100 của dãy là : \(\frac{1}{100.101}\)
Ta có :
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
Bài 2 mình cho quy luật rồi bạn tự tính nhé.
Quy luật :
66 = 6 +60
176 = 66 + 110
336 = 176 +160
\(...\)
Số tiếp theo bạn cứ việc lấy số trước nó cộng với số hạng thứ hai cộng với 50 (lấy số hạng thứ hai cộng với 50) trong phép tính trước là ra.
tính tổng của 100 số hạng của dãy hả bạn hay là sao
Bài 1: Tính B = 1 + 2 + 3 +...+ 98 + 99
Tìm tổng của dãy số mà các số hạng không cách đềuBài 1: Tính A = 1.2 + 2.3 + 3.4 +...+n. (n+1)
1: Số số hạng là (99-1):1+1=99(số)
Tổng là \(\dfrac{99\cdot\left(99+1\right)}{2}=99\cdot50=4950\)
1:
3*A=1*2*3+2*3*(4-1)+3*4*(5-2)+...+n(n+1)[(n+2)-(n-1)]
=1*2*3-1*2*3+2*3*4-2*3*4+...-(n-1)*n*(n+1)+n(n+1)(n+2)
=n(n+1)*(n+2)
=>\(A=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)
Cho dãy số : 1/1.2 ; 1/2.3 ; 1/3. ; ...
Tính tổng của 2005 số hạng đầu tiên của dãy số
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2005.2006
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2005 - 1/2006
= 1 - 1/2006
= 2005/2006
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2005.2006
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2005 - 1/2006
= 1 - 1/2006
= 2005/2006
tích nha Thiên Thần Dễ Thương
Số hạng thứ nhất là 1/1.2
Số hạng thứ hai là 1/2.3
Suy ra số hạng thứ 2005 là 1/2005.2006
1/1.2+1/2.3+1/3.4+...+1/2005.2006=1-1/2+1/2-1/3+1/3-1/4+....+1/2005-1/2006
= 1-1/2006
= 2005/2006
Đáp số : 2005/2006