Ôn tập toán 6

hi

tính tổng 100 số hạng đầu tiên của các dãy sau:

a)\(\frac{1}{1.2},\frac{1}{2.3},\frac{1}{3.4},\frac{1}{4.5},...\)

b)\(\frac{1}{6},\frac{1}{66},\frac{1}{176},\frac{1}{336},...\)

PK
10 tháng 6 2016 lúc 15:03

Thừa số thứ nhất của mẫu số của phân số thứ 100 là:

\(\left(100-1\right):1+1=100\)

=> Mẫu số của phân số thứ 100 là 100.101

Tổng 100 số hạng đầu tiên:

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{100}{101}\)

b) Ta xét mẫu số của các số hạng trong dãy :

6 = 1.6

66 = 6.11

176 = 11.16

336 = 16.21

........

Thừa số thứ nhất của mẫu của phân số thứ 100 của dãy là:

\(\left(100-1\right).5+1=496\)

=> Mẫu của phân số thứ 100 là 496.501.

Tính tổng 100 số hạng đầu:

\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{496.501}\)

\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{496}-\frac{1}{501}\)

\(=1-\frac{1}{501}=\frac{500}{501}\)

Bình luận (2)
hi
10 tháng 6 2016 lúc 14:29

giúp tớ vớigianroi

Bình luận (0)
hi
10 tháng 6 2016 lúc 15:15

thanks PHẠM TUẤN KIỆTvui

Bình luận (0)
SP
20 tháng 3 2017 lúc 20:24

a)100/101

b)500/501

Bình luận (0)

Các câu hỏi tương tự
NO
Xem chi tiết
BH
Xem chi tiết
KN
Xem chi tiết
CN
Xem chi tiết
NM
Xem chi tiết
DH
Xem chi tiết
CD
Xem chi tiết
DT
Xem chi tiết
TL
Xem chi tiết