Những câu hỏi liên quan
HT
Xem chi tiết
NT
12 tháng 12 2023 lúc 20:47

1.3:

a: \(\dfrac{5}{14}=\dfrac{5\cdot3}{14\cdot3}=\dfrac{15}{42}\)

\(\dfrac{4}{21}=\dfrac{4\cdot2}{21\cdot2}=\dfrac{8}{42}\)

b: \(\dfrac{4}{5}=\dfrac{4\cdot12}{5\cdot12}=\dfrac{48}{60}\)

\(\dfrac{7}{12}=\dfrac{7\cdot5}{12\cdot5}=\dfrac{35}{60}\)

\(\dfrac{8}{5}=\dfrac{8\cdot12}{5\cdot12}=\dfrac{96}{60}\)

1.2:

a: \(21=3\cdot7;36=3^2\cdot2^2\)

=>\(ƯCLN\left(21;36\right)=3>1\)
=>Phân số này chưa tối giản

\(\dfrac{21}{36}=\dfrac{21:3}{36:3}=\dfrac{7}{12}\)

b: \(23=23;73=73\)

=>\(ƯCLN\left(23;73\right)=1\)

=>23/73 là phân số tối giản

Bình luận (0)
NH
12 tháng 12 2023 lúc 21:06

1.1:

theo đề ta có: 480⋮a và 720⋮a

=> a = ƯCLN(480,720)

480=2 mũ 5.3.5

720=2 mũ 4.3 mũ 2.5

=> ƯCLN(420,720)= 2 mũ 4.3.5=240

=> a=240

Bình luận (0)
H24
Xem chi tiết
KL
15 tháng 4 2023 lúc 14:12

a) Gọi d là ƯCLN(n + 1; n + 2)

\(\Rightarrow n+1⋮d\)

\(n+2⋮d\)

\(\Rightarrow\left[\left(n+2\right)-\left(n+1\right)\right]⋮d\)

\(\Rightarrow\left(n+2-n-1\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{n+1}{n+2}\) là phân số tối giản

b) Gọi d là ƯCLN(n + 1; 3n + 4)

\(\Rightarrow n+1⋮d\) và \(3n+4⋮d\)

Do \(n+1⋮d\Rightarrow3n+3⋮d\)

\(\Rightarrow\left[\left(3n+4\right)-\left(3n+3\right)\right]⋮d\)

\(\Rightarrow\left(3n+4-3n-3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{n+1}{3n+4}\) là phân số tối giản

c) Gọi d là ƯCLN(3n + 2; 5n + 3)

\(\Rightarrow3n+2⋮d\) và \(5n+3⋮d\)

Do \(3n+2⋮d\)

\(\Rightarrow5\left(3n+2\right)⋮d\)

\(\Rightarrow15n+10⋮d\)   (1)

Do \(5n+3⋮d\)

\(\Rightarrow3\left(5n+3\right)⋮d\)

\(\Rightarrow15n+9⋮d\)   (2)

Từ (1) và (2) \(\Rightarrow\left[\left(15n+10\right)-\left(15n+9\right)\right]⋮d\)

\(\Rightarrow\left(15n+10-15n-9\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{3n+2}{5n+3}\) là phân số tối giản

d) Gọi d là ƯCLN(12n + 1; 30n + 2)

\(\Rightarrow12n+1⋮d\) và \(30n+2⋮d\)

Do \(12n+1⋮d\)

\(\Rightarrow5\left(12n+1\right)⋮d\)

\(\Rightarrow60n+5⋮d\)   (3)

Do \(30n+2⋮d\)

\(\Rightarrow2\left(30n+2\right)⋮d\)

\(\Rightarrow60n+4⋮2\)   (4)

Từ (3 và (4) \(\Rightarrow\left[\left(60n+5\right)-\left(60n+4\right)\right]⋮d\)

\(\Rightarrow\left(60n+5-60n-4\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{12n+1}{30n+2}\) là phân số tối giản

 

Bình luận (0)
NT
15 tháng 4 2023 lúc 13:43

a: Gọi d=ƯCLN(n+1;n+2)

=>n+2-n-1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

b: Gọi d=ƯCLN(3n+4;n+1)

=>3n+4-3n-3 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

c: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

d: Gọi d=ƯCLN(12n+1;30n+2)

=>60n+5-60n-4 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

Bình luận (2)
VT
Xem chi tiết
NT
2 tháng 3 2023 lúc 13:12

a: Gọi d=ƯCLN(16n+5;6n+2)

=>16n+5 và 6n+2 chia hết cho d

=>48n+15-48n-16 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>ĐPCM

c: Gọi d=ƯCLN(2n+3;4n+8)

=>4n+8-4n-6 chia hết cho d

=>2 chia hết cho d

mà 2n+3 lẻ

nên d=1

=>ĐPCM

Bình luận (2)
QL
Xem chi tiết
HM
2 tháng 10 2023 lúc 22:04

a) \(\frac{15}{17}\)

Vì ƯCLN(15, 17)=1 nên phân số \(\frac{15}{17}\) đã tối giản

b) \(\frac{70}{105}\)

Ta có: 70 = 2.5.7;    105= 3.5.7

+ Thừa số nguyên tố chung là 5 và 7

+ Số mũ nhỏ nhất của 5 là 1, số mũ nhỏ nhất của 7 là 1 nên \(ƯCLN(70, 105) = 35 \ne 1\) nên phân số chưa tối giản. 

\(\frac{70}{105}=\frac{70:35}{105:35}=\frac{2}{3}\)

ƯCLN(2, 3)=1 nên \(\frac{70}{105}\) đã rút gọn về \(\frac{2}{3}\) tối giản.

Bình luận (0)
HV
Xem chi tiết
H24
Xem chi tiết
H24
21 tháng 2 2019 lúc 19:45

gọi d là ƯC(3n - 2; 4n - 3)

\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}}\)

\(\Rightarrow12n-8-12n+9⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\pm1\)

=> ...

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 2 2017 lúc 6:12

Chú ý rằng, phân số tối giản là phân số mà tử và mẫu chỉ có ước chung là ±1.

a) Gọi d là ước chung của n + 7n + 6. Ta chứng minh d = ±1 bằng cách xét hiệu (n + 7) - (n + 6) chia hết cho d.

b) Gọi d là ước chung của 3n + 2 và n +1. Ta chứng minh d = ±1 bằng cách xét hiệu (3n + 2) - 3.(n +1) chia hết cho d.

Bình luận (0)
VD
Xem chi tiết
PB
Xem chi tiết
CT
30 tháng 5 2017 lúc 3:34

Đáp án C

Bình luận (0)