cho phân số a/b tối giản
chứng tỏ các phân số sau tối giản
a)a/a+b
b) a-b/b
c) a2/a-b
bài 1: 1.1 :Tìm số tự nhiên a lớn nhất rằng 480⋮a và 720⋮a
1.2: Các phân số sau có là phân số tối giản hay không? Hãy rút gọn chúng nếu chưa tối giản
a) 21phần 36 b) 23 phần 73
1.3: Quy đồng mẫu các phân số sau:
a) 5 phần 14 và 4 phần 21 b) 4 phần 5;7 phần 12 và 8 phần 5
1.3:
a: \(\dfrac{5}{14}=\dfrac{5\cdot3}{14\cdot3}=\dfrac{15}{42}\)
\(\dfrac{4}{21}=\dfrac{4\cdot2}{21\cdot2}=\dfrac{8}{42}\)
b: \(\dfrac{4}{5}=\dfrac{4\cdot12}{5\cdot12}=\dfrac{48}{60}\)
\(\dfrac{7}{12}=\dfrac{7\cdot5}{12\cdot5}=\dfrac{35}{60}\)
\(\dfrac{8}{5}=\dfrac{8\cdot12}{5\cdot12}=\dfrac{96}{60}\)
1.2:
a: \(21=3\cdot7;36=3^2\cdot2^2\)
=>\(ƯCLN\left(21;36\right)=3>1\)
=>Phân số này chưa tối giản
\(\dfrac{21}{36}=\dfrac{21:3}{36:3}=\dfrac{7}{12}\)
b: \(23=23;73=73\)
=>\(ƯCLN\left(23;73\right)=1\)
=>23/73 là phân số tối giản
1.1:
theo đề ta có: 480⋮a và 720⋮a
=> a = ƯCLN(480,720)
480=2 mũ 5.3.5
720=2 mũ 4.3 mũ 2.5
=> ƯCLN(420,720)= 2 mũ 4.3.5=240
=> a=240
CMR các phân số sau là phân số tối giản
a) \(A=\dfrac{n+1}{n+2}\)
b) \(B=\dfrac{n+1}{3n+4}\)
c) \(C=\dfrac{3n+2}{5n+3}\)
d) \(D=\dfrac{12n+1}{30n+2}\)
a) Gọi d là ƯCLN(n + 1; n + 2)
\(\Rightarrow n+1⋮d\)
\(n+2⋮d\)
\(\Rightarrow\left[\left(n+2\right)-\left(n+1\right)\right]⋮d\)
\(\Rightarrow\left(n+2-n-1\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{n+1}{n+2}\) là phân số tối giản
b) Gọi d là ƯCLN(n + 1; 3n + 4)
\(\Rightarrow n+1⋮d\) và \(3n+4⋮d\)
Do \(n+1⋮d\Rightarrow3n+3⋮d\)
\(\Rightarrow\left[\left(3n+4\right)-\left(3n+3\right)\right]⋮d\)
\(\Rightarrow\left(3n+4-3n-3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{n+1}{3n+4}\) là phân số tối giản
c) Gọi d là ƯCLN(3n + 2; 5n + 3)
\(\Rightarrow3n+2⋮d\) và \(5n+3⋮d\)
Do \(3n+2⋮d\)
\(\Rightarrow5\left(3n+2\right)⋮d\)
\(\Rightarrow15n+10⋮d\) (1)
Do \(5n+3⋮d\)
\(\Rightarrow3\left(5n+3\right)⋮d\)
\(\Rightarrow15n+9⋮d\) (2)
Từ (1) và (2) \(\Rightarrow\left[\left(15n+10\right)-\left(15n+9\right)\right]⋮d\)
\(\Rightarrow\left(15n+10-15n-9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{3n+2}{5n+3}\) là phân số tối giản
d) Gọi d là ƯCLN(12n + 1; 30n + 2)
\(\Rightarrow12n+1⋮d\) và \(30n+2⋮d\)
Do \(12n+1⋮d\)
\(\Rightarrow5\left(12n+1\right)⋮d\)
\(\Rightarrow60n+5⋮d\) (3)
Do \(30n+2⋮d\)
\(\Rightarrow2\left(30n+2\right)⋮d\)
\(\Rightarrow60n+4⋮2\) (4)
Từ (3 và (4) \(\Rightarrow\left[\left(60n+5\right)-\left(60n+4\right)\right]⋮d\)
\(\Rightarrow\left(60n+5-60n-4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{12n+1}{30n+2}\) là phân số tối giản
a: Gọi d=ƯCLN(n+1;n+2)
=>n+2-n-1 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
b: Gọi d=ƯCLN(3n+4;n+1)
=>3n+4-3n-3 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
c: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
d: Gọi d=ƯCLN(12n+1;30n+2)
=>60n+5-60n-4 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
CMR : với mọi số tự nhiên, các phân số sau tối giản
a) A= 16n+5/6n+2
b) B= 2n+1/2n.(n+1)
c) C= 2n+3/4n+8
a: Gọi d=ƯCLN(16n+5;6n+2)
=>16n+5 và 6n+2 chia hết cho d
=>48n+15-48n-16 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>ĐPCM
c: Gọi d=ƯCLN(2n+3;4n+8)
=>4n+8-4n-6 chia hết cho d
=>2 chia hết cho d
mà 2n+3 lẻ
nên d=1
=>ĐPCM
Các phân số sau đã tối giản chưa? Nếu chưa, hãy rút gọn về phân số tối giản
a) \(\frac{15}{17}\)
b) \(\frac{70}{105}\)
a) \(\frac{15}{17}\)
Vì ƯCLN(15, 17)=1 nên phân số \(\frac{15}{17}\) đã tối giản
b) \(\frac{70}{105}\)
Ta có: 70 = 2.5.7; 105= 3.5.7
+ Thừa số nguyên tố chung là 5 và 7
+ Số mũ nhỏ nhất của 5 là 1, số mũ nhỏ nhất của 7 là 1 nên \(ƯCLN(70, 105) = 35 \ne 1\) nên phân số chưa tối giản.
\(\frac{70}{105}=\frac{70:35}{105:35}=\frac{2}{3}\)
ƯCLN(2, 3)=1 nên \(\frac{70}{105}\) đã rút gọn về \(\frac{2}{3}\) tối giản.
cho phân số a/b tối giản . chứng tỏ rằng các phân số sau tối giản
a, a/a-b b, a bình phương / a+b
Bài 1:
a, Chứng tỏ phân số 3n-2/4n-3 tối giản
b,Tìm n để phân số B= 18n+3/21n+7 tối giản
Bài 2: Tìm phân số tối giản a/b sao cho phân số a/b-a bằng tám lần phân số a/b
gọi d là ƯC(3n - 2; 4n - 3)
\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}}\)
\(\Rightarrow12n-8-12n+9⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
=> ...
Cho n thuộc Z. Chứng tỏ các phân số sau là phân số tối giản:
a) n + 7 n + 6
b) 3 n + 2 n + 1
Chú ý rằng, phân số tối giản là phân số mà tử và mẫu chỉ có ước chung là ±1.
a) Gọi d là ước chung của n + 7 và n + 6. Ta chứng minh d = ±1 bằng cách xét hiệu (n + 7) - (n + 6) chia hết cho d.
b) Gọi d là ước chung của 3n + 2 và n +1. Ta chứng minh d = ±1 bằng cách xét hiệu (3n + 2) - 3.(n +1) chia hết cho d.
Chứng tỏ các phân số sau là các phân số tối giản:
a) A = 12n + 1/30n + 2
b) B = 14n + 17/21n + 25
Biết ∫ 0 π 2 x + x cos x - sin 3 x 1 + cos x d x = π 2 3 - b c Trong đó a, b, c là các số nguyên dương, phân số b/c tối giản. Tính T = a 2 + b 2 + c 2
A. T =16
B. T = 59
C. T =69
D. T = 50