Những câu hỏi liên quan
H24
Xem chi tiết
NH
13 tháng 8 2016 lúc 9:51

Hỏi đáp Toán

Bình luận (0)
NN
Xem chi tiết
NM
23 tháng 11 2021 lúc 17:24

\(1,\\ a,ĐK:m\ne1\\ \Delta=49+48\left(m-1\right)=48m+1\\ \text{PT vô nghiệm }\Leftrightarrow48m+1< 0\Leftrightarrow m< -\dfrac{1}{48}\\ \text{PT có nghiệm kép }\Leftrightarrow48m+1=0\Leftrightarrow m=-\dfrac{1}{48}\\ \text{PT có 2 nghiệm phân biệt }\Leftrightarrow48m+1>0\Leftrightarrow m>-\dfrac{1}{48};m\ne1\)

\(b,\Delta=4\left(m-1\right)^2+4\left(2m+1\right)=4m^2+8>0,\forall m\\ \text{Vậy PT có 2 nghiệm phân biệt với mọi m}\\ 2,\\ \text{PT có 2 nghiệm phân biệt }\)

\(\Leftrightarrow\Delta=4\left(m+1\right)^2-4\left(m^2-1\right)>0\\ \Leftrightarrow4m^2+8m+4-4m^2+4>0\\ \Leftrightarrow8m+8>0\\ \Leftrightarrow m>-1\)

Bình luận (0)
NC
Xem chi tiết
H24
16 tháng 2 2023 lúc 3:18

Vì hai bài giống nhau nên anh sẽ làm mẫu bài 1 nhé.

Bình luận (0)
NV
Xem chi tiết
PD
22 tháng 1 2018 lúc 12:59

mày éo viết được cái đề hẳn họi à ????

Bình luận (0)
MS
Xem chi tiết
PT
Xem chi tiết
NQ
6 tháng 2 2021 lúc 21:12

Xét m=1 phương trình trở thành \(-4x+1=0\)có nghiệm duy nhất x=-1/4

với m#1 ta có \(\Delta'=\left(m+1\right)^2-m\left(m-1\right)=3m+1\)

với \(\hept{\begin{cases}m\ne1\\m>-\frac{1}{3}\end{cases}}\) pt có hai nghiệm phân biệt

với \(m=-\frac{1}{3}\) pt có nghiệm duy nhất

với \(m< -\frac{1}{3}\)pt vô nghiệm,

theo viet ta có \(\hept{\begin{cases}x_1+x_2=\frac{2\left(m+1\right)}{m-1}=2+\frac{4}{m-1}\\x_1x_2=\frac{m}{m-1}=1+\frac{1}{m-1}\end{cases}}\) lấy phương trình trên trừ đi 4 lần phương trình dưới ta có 

\(x_1+x_2-4x_1x_2=-2\)

ý sau, ta có \(\left|x_1-x_2\right|=\frac{2\sqrt{\Delta'}}{\left|a\right|}=\frac{2\sqrt{3m+1}}{\left|m-1\right|}>2\)

\(\frac{\Leftrightarrow4\left(3m+1\right)}{\left(m-1\right)^2}\ge4\Leftrightarrow m^2-5m\le0\Rightarrow m\in\left[0,5\right]\)

kết hợp với đk có 2 nghiệm phân biệt ở câu a , ta có \(m\in\left[0,5\right]\backslash\left\{1\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
BB
Xem chi tiết
NL
23 tháng 1 2021 lúc 13:16

\(x^2\left(x+2a\right)-\left(a+1\right)^2\left(x+2a\right)=0\)

\(\Leftrightarrow\left(x+2a\right)\left[x^2-\left(a+1\right)^2\right]=0\)

\(\Leftrightarrow\left(x+2a\right)\left(x+a+1\right)\left(x-a-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2a\\x=-a-1\\x=a+1\end{matrix}\right.\) 

Pt đã cho luôn có 3 nghiệm (như trên) với mọi a

\(\left\{{}\begin{matrix}-a-1-\left(-2a\right)=a-1< 0\\\left(-a-1\right)-\left(a+1\right)=-2\left(a+1\right)< 0\\\end{matrix}\right.\)

\(\Rightarrow x=-a-1\) là nghiệm nhỏ nhất

Bình luận (0)
H24
Xem chi tiết
XT
4 tháng 5 2017 lúc 21:00

a)1+x\(\ge\)mx+m

<=>x-mx\(\ge\)m-1

<=>x(1-m)\(\ge\)m-1(1)

*)Nếu m=1 thì (1)<=>0x=0(thỏa mãn với mọi x)

*)Nếu m < 1 thì 1-m>0

(1)<=>\(x\ge\dfrac{m-1}{1-m}\)

<=>x\(\ge\)-1

*)Nếu m>1 thì 1-m<0

(1)<=>x\(\le\dfrac{m-1}{1-m}\)

<=>x\(\le-1\)

Vậy...

b)2x4-x3-2x2-x+2=0

<=>(2x4-2x3)+(x3-x2)-(x2-x)+(2x+2)=0

<=>(x-1)(2x3+x2-x+2)=0

bó tay :)

Bình luận (0)
NH
Xem chi tiết
LH
22 tháng 8 2019 lúc 18:02

1, a)Vs a,b,c >0 ,áp dụng bđt svac-xơ có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)

<=> \(\frac{1}{a+b+c}\ge\frac{9}{a+b+c}\) (vô lý)

=>Phương trình \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\) vô nghiệm

Bình luận (0)