Tìm m để 2 đường thẳng d:y = 5x+m-3;d':y =3x+5-m cắt nhau tại 1 điểm nằm trên trục tung
Cho parabol (P): \(x^2+2x-3\) và đường thẳng d:y=x+m. Tìm m để d
cắt (P) tại hia điểm phân biệt A, B nằm về hai phía đường thẳng y=1.
Phân tích: Phương trình hoàn độ giao điểm:
\(x^2+2x-3=x+m\Leftrightarrow x^2+x-3-m=0\left(1\right)\)
\(\left(d\right)\) cắt \(\left(P\right)\) tại 2 điểm phân biệt A ; B
=> (1) có 2 nghiệm phân biệt
<=> \(\Delta>0\) \(\Leftrightarrow m>\dfrac{-13}{4}\left(2\right)\)
giả sử: \(A\left(x_1;y_1\right),B\left(x_2;y_2\right)\) với \(x_1;x_2\) là hai nghiệm của (1) Ta phải có :
\(\left(y_1-1\right)\left(y_2-2\right)< 0\Leftrightarrow\left(x_1+m-1\right)\left(x_2+m-1\right)< 0\)
\(\Leftrightarrow x_1x_2+\left(m-1\right)\left(x_1+x_2\right)+m^2-2m+1< 0\)
\(\Leftrightarrow m^2-4m-1< 0\Leftrightarrow2-\sqrt{5}< m< 2+\sqrt{5}\left(thỏa\left(2\right)\right)\)
\(m\in Z\Rightarrow m\in\left\{0;1;2;3;4\right\}\)
Cho 2 đường thẳng d:y=x+3 và d':y=-2x+m^2-1.Tìm m để 2 đường thẳng cắt nhau tại 1 điểm trên trục tung.Khi đó d cắt Ox tại M,d' cắt Ox tại N.Tính S MON
Tìm tham số m là số thực để có đường thằng d:
y = (2m – 1)x + 3 + m vuông vóc với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y = x³- 3x² + 1
A. m = 3/2 B. m = 3/4
C. m = -1/2 D. m = 1/4
TXĐ: D = R
\(y'=3x^2-6x=0\) \(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\x=2\Rightarrow y=-3\end{matrix}\right.\)
Suy ra 2 điểm cực trị của đồ thị là: A(0; 1) và B(2; -3)
Ptđt đi qua 2 điểm cực trị:
\(\dfrac{x}{2}=\dfrac{y-1}{-4}\) \(\Rightarrow-2x=y-1\) \(\Leftrightarrow y=-2x+1\left(d'\right)\)
Vì \(d\perp d'\) \(\Rightarrow\left(2m-1\right)\cdot\left(-2\right)=-1\) \(\Leftrightarrow m=\dfrac{3}{4}\)
Chọn B
cho hàm y=2x+m-1
A) tìm m để đồ thị qua A( 1;3). Với m tìm được, vẽ đồ thị
B)tìm m để đồ thị cắt y=x-1 tại 1 điểm trên trục hoành
c) tìm m để đường d:y=3x+m+2 cắt đường y=x+3 tại 1 điểm trên trục hoành
D) tìm m để khoảng cách từ gốc O đến d:y=(m+3)x-4 là 3
a: Thay x=1 và y=3 vào (d), ta đc:
m-1+2=3
=>m+1=3
=>m=2
b: Thay y=0 vào (d), ta đc:
x-1=0
=>x=1
Thay x=1 và y=0 vào (d1), ta được:
2*1+m-1=0
=>m=-1
Tìm tham số m để đường thẳng d:y=2x - m tiếp xúc với parabol (P):y=x2
Phương trình hoành độ giao điểm (d) và (P):
\(x^2=2x-m\Leftrightarrow x^2-2x+m=0\) (1)
(d) tiếp xúc (P) khi và chỉ khi (1) có nghiệm kép
\(\Leftrightarrow\Delta'=1-m=0\)
\(\Rightarrow m=1\)
a: Tọa độ giao điểm của đường thẳng (d1) và đường thẳng (d2) là:
\(\left\{{}\begin{matrix}3x-1=2x+1\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-2x=2+1\\y=2x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=3\\y=2\cdot3+1=7\end{matrix}\right.\)
Thay x=3 và y=7 vào (d), ta được:
\(3\left(4m+5\right)-2m+7=7\)
=>\(12m+15-2m=0\)
=>10m=-15
=>m=-3/2
b: để (d)//(d3) thì \(\left\{{}\begin{matrix}4m+5=-3\\-2m+7< >2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4m=-3-5=-8\\-2m< >-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-2\\m< >\dfrac{5}{2}\end{matrix}\right.\)
=>m=-2
Cho parabol (P) : y = \(\dfrac{1}{2}x^2\)và đường thẳng d:y=-x+m
a. Tìm m để d tiếp xúc với (P). Tìm tọa độ tiếp điểm
a,
Xét pt hoành độ giao điểm của (P) và (d): \(x^2+2x-2m=0\) (1)
\(\Delta=2^2-4\left(-2m\right)=4+8m\)
Để (d) tiếp xúc (P) thì pt (1) có nghiệm kép \(\Rightarrow\Delta=4+8m=0\)
\(\Rightarrow m=-\dfrac{1}{2}\)
Thay \(m=-\dfrac{1}{2}\) vào (1) \(\Rightarrow x^2+2x+1=0\)
\(\Rightarrow\left(x+1\right)^2=0\) \(\Rightarrow x=-1\)
\(\Rightarrow y=\dfrac{1}{2}\left(-1\right)^2=\dfrac{1}{2}\)
Vậy (d) tiếp xúc (P) khi \(m=-\dfrac{1}{2}\) tại tọa độ \(\left(-1;\dfrac{1}{2}\right)\).
xác định m để 3 đường thẳng d:y=2x+4 và d' :y=-x+m+2
Cho (P):y=x2 và đường thẳng d:y=mx+3. Tìm m để đường thẳng d cắt (P) tại 2 điểm A,B phân biệt sao cho độ dài AB ngắn nhất