Những câu hỏi liên quan
HA
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
NT
28 tháng 3 2021 lúc 20:41

Ta có: \(A\cdot C+B^2-2x^4y^4=x^3y\cdot xy^3+\left(x^2y^2\right)^2-2x^4y^4\)

\(\Leftrightarrow A\cdot C+B^2-2x^4y^4=x^4y^4+x^4y^4-2xy^4\)

\(\Leftrightarrow A\cdot C+B^2-2x^4y^4=0\)(đpcm)

Bình luận (0)
NH
28 tháng 3 2021 lúc 20:45

A.C + B^2 - 2x^4.y^4

=(x^3.y)(x.y^3) + x^4.y^4 - 2x^4.y^4

=(x^4.y^4 + x^4.y^4) - 2x^4.y^4

=2x^4.y^4 - 2x^4.y^4

=0

Bình luận (0)
VH
Xem chi tiết
XO
9 tháng 10 2019 lúc 22:24

Từ \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\left(1\right)\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\left(2\right)\)

\(d^2=ac\Rightarrow\frac{c}{d}=\frac{d}{a}\left(3\right)\)

Từ (1) (2) (3) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

\(\Rightarrow a=b=c=d\)

Khi đó M = \(\frac{a}{b+c+d}+\frac{b}{a+c+d}=\frac{a}{3a}+\frac{a}{3a}=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}\)

Vậy \(M=\frac{2}{3}\)

Bình luận (0)
XS
Xem chi tiết
LA
Xem chi tiết
ZZ
21 tháng 2 2020 lúc 19:50

\(b^2=ac;c^2=bd\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c};\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Đến đây có 2 cách:

Cách 1:Đặt k.Dài,tự làm

Cách 2:

Áp dụng DTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{abc}{bcd}=\frac{a}{d}\)

Bình luận (0)
 Khách vãng lai đã xóa
IS
21 tháng 2 2020 lúc 19:56

ta có \(b^2=ac=\frac{a}{b}=\frac{b}{c}\) (1)

\(c^2=bd=\frac{b}{c}=\frac{c}{d}\left(2\right)\)
từ (1) and (2) \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\left(3\right)\)

ta lại có \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(4\right)\)

từ (3) and (4) =>\(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(dpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
CD
22 tháng 2 2020 lúc 8:51

Từ \(b^2=ac\)\(\Rightarrow\frac{a}{b}=\frac{b}{c}\)(1)

    \(c^2=bd\)\(\Rightarrow\frac{b}{c}=\frac{c}{d}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

mà \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{abc}{bcd}=\frac{a}{d}\)( vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\))

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)( cùng bằng \(\left(\frac{a}{b}\right)^3\)) ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
DD
Xem chi tiết
ND
Xem chi tiết
NT
12 tháng 2 2018 lúc 7:59

Ta có: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\frac{a^3+b^3+c^3+2ab+2ac+2bc}{b^3+c^3+d^3+2bc+2bd+2cd}\)

Bình luận (0)
Xem chi tiết
H24
20 tháng 2 2021 lúc 21:33

1)a.d=b.c

Bình luận (2)
LH
20 tháng 2 2021 lúc 21:34

Hai phân số c/d (với b,d đều khác 0) bằng nhau nếu:

 

1)  a.d=b.c

2)  a.b=c.d

3)  a.c=b.d

Bình luận (0)
LT
20 tháng 2 2021 lúc 21:36

Hai phân số cdcd (với b,d đều khác 0) bằng nhau nếu:

1)  a.d=b.c

2)  a.b=c.d

3)  a.c=b.d

Bình luận (0)