Những câu hỏi liên quan
PB
Xem chi tiết
CT
16 tháng 3 2019 lúc 7:35

Cho đa thức F(x) = 2ax2 + bx (a,b là hằng số). Xác định a,b để đa thức F(x) có nghiệm x = -1 và F(1) = 4

Vì đa thức F(x) có nghiệm x = -1 nên thay F(-1) = 0

⇒ 2a - b = 0 ⇒ b = 2a (0.5 điểm)

Vì F(1) = 4 ⇒ 2a + b = 4 ⇒ b = 4 - 2a

Từ đây ta có 2a = 4 - 2a ⇒ 4a = 4 ⇒ a = 1 (0.5 điểm)

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 8 2017 lúc 6:17

Vì x = -1 là nghiệm của H(x) nên

H(-1) = 0 ⇒ 2a(-1)2 + b(-1) = 2a - b = 0 ⇒ b = 2a

Vì H(1) = 4 ⇒ 2a.12 + b.1 = 2a + b = 4 ⇒ b = 4 - 2a

Ta có 2a = 4 - 2a ⇒ 4a = 4 ⇒ a = 1, từ đó b = 2. Chọn B

Bình luận (0)
TK
Xem chi tiết
HS
10 tháng 5 2018 lúc 20:03

Thay x= - 1 vào đa thức , ta có

F(x)= 2a(-1)2 + b(-1)

F(x)= 2a-b

Đặt F(x)=0, ta có :

2a-b=0=> 2a = b hay b gấp đôi a

Bình luận (2)
HP
14 tháng 5 2018 lúc 12:14

ccmnr

Bình luận (0)
LK
Xem chi tiết
TC
14 tháng 8 2021 lúc 19:33

undefined

Bình luận (1)
PA
Xem chi tiết
NL
18 tháng 8 2021 lúc 21:53

\(F\left(x\right)-F\left(x-1\right)=x\)

\(\Leftrightarrow ax^2+bx-a\left(x-1\right)^2-b\left(x-1\right)=x\)

\(\Leftrightarrow2ax-a+b=x\)

Đồng nhất hệ số 2 vế:

\(\Rightarrow\left\{{}\begin{matrix}2a=1\\-a+b=0\end{matrix}\right.\) \(\Rightarrow a=b=\dfrac{1}{2}\)

Bình luận (1)
NH
Xem chi tiết
NT
15 tháng 4 2023 lúc 9:06

F(x)=0

=>x=-2 hoặc x=1

Để F(x) và G(x) có chung tập nghiệm thì:

-2+4a-2b+2=0 và 1+a+b+2=0

=>4a-2b=0 và a+b=-3

=>a=-1 và b=-2

Bình luận (0)
H24
Xem chi tiết
NG
30 tháng 5 2019 lúc 16:33

Cho đa thức F(x) = 2ax^2 + bx (a,b là hằng số). Xác định a,b để đa thức F(x) có nghiệm x = -1 và F(1) = 4

Vì đa thức F(x) có nghiệm x = -1 nên  F(-1) = 0

⇒ 2a - b = 0 ⇒ b = 2a 

Vì F(1) = 4 ⇒ 2a + b = 4 ⇒ b = 4 - 2a(1)

Từ đây ta có 2a = 4 - 2a ⇒ 4a = 4 ⇒ a = 1

Thay a=1 vào (1)

=> b=4-2.1=4-2=2

Vậy a=1 vs b=2

Bình luận (0)
TP
30 tháng 5 2019 lúc 16:35

hình như bạn sai đề

Bình luận (0)
NG
30 tháng 5 2019 lúc 17:33

mk thấy đâu có sai đâu

mk giải đc mà

Bình luận (0)
ND
Xem chi tiết
BB
Xem chi tiết
NL
13 tháng 1 2021 lúc 21:52

\(\left\{{}\begin{matrix}9a+3b+c>2\\a+b+c< -1\\a-b+c>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}9a+3b+c>2\\-a-b-c>1\\a-b+c>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}9a+3b+c>2\\-2a-2b-2c>1\\a-b+c>0\end{matrix}\right.\)

Cộng vế với vế:

\(8a>3\Rightarrow a>\dfrac{3}{8}>0\)

Vậy \(a>0\)

Bình luận (0)
TO
Xem chi tiết
H24
14 tháng 4 2018 lúc 18:01

mik nghĩ 

bn có thể tham khảo ở link :

https://olm.vn/hoi-dap/question/902782.html 

~~ hok tốt ~ 

Bình luận (0)
TO
14 tháng 4 2018 lúc 18:04

là ren á bạn

Bình luận (0)
PQ
14 tháng 4 2018 lúc 18:22

Ta có : 

\(\left(x-1\right)\left(x+3\right)=0\) ( nghiệm của đa thức \(f\left(x\right)\) ) 

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)

Lại có : Nghiệm của đa thức \(f\left(x\right)\) cũng là nghiệm của đa thức \(g\left(x\right)\)  

+) Thay \(x=1\) vào nghiệm của đa thức \(g\left(x\right)=x^3-ax^2+bx-3=0\) ta được : 

\(1^3-a.1^2+b.1-3=0\)

\(\Leftrightarrow\)\(1-a+b-3=0\)

\(\Leftrightarrow\)\(a-b=1-3\)

\(\Leftrightarrow\)\(a-b=-2\) \(\left(1\right)\)

+) Thay \(x=-3\) vào nghiệm của đa thức \(g\left(x\right)=x^3-ax^2+bx-3=0\) ta được : 

\(\left(-3\right)^3-a.\left(-3\right)^2+b.\left(-3\right)-3=0\)

\(\Leftrightarrow\)\(-27-9a+b.\left(-3\right)-3=0\)

\(\Leftrightarrow\)\(9a-3b=-27-3\)

\(\Leftrightarrow\)\(9a-3b=-30\)

\(\Leftrightarrow\)\(\left(-3\right)\left(-3a+b\right)=\left(-3\right).10\)

\(\Leftrightarrow\)\(b-3a=10\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(a-b+b-3a=-2+10\)

\(\Leftrightarrow\)\(-2a=8\)

\(\Leftrightarrow\)\(a=\frac{8}{-2}\)

\(\Leftrightarrow\)\(a=-4\)

Do đó : 

\(a-b=-2\)

\(\Leftrightarrow\)\(-4-b=-2\)

\(\Leftrightarrow\)\(b=2-4\)

\(\Leftrightarrow\)\(b=-2\)

Vậy các hệ số a, b là \(a=-4\) và \(b=-2\)

Chúc bạn học tốt ~ 

Bình luận (0)