Những câu hỏi liên quan
TV
Xem chi tiết
HF
17 tháng 8 2020 lúc 13:41

\(\frac{1}{a}+\frac{1}{a-b}=\frac{1}{b-c}-\frac{1}{c}\Leftrightarrow\frac{1}{a-b}+\frac{1}{c}=\frac{1}{b-c}-\frac{1}{a}\)

\(\Leftrightarrow\frac{c+a-b}{\left(a-b\right)c}=\frac{a-b+c}{\left(b-c\right)a}\)(1)

Do \(\frac{a}{c}=\frac{a-b}{b-c}\Leftrightarrow a\left(b-c\right)=\left(a-b\right)c\)nên (1) đúng, đẳng thức được CM

Bình luận (0)
 Khách vãng lai đã xóa
BH
Xem chi tiết
KS
21 tháng 7 2021 lúc 14:41

Ta có :

 \(ac=b^2\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}\left(1\right)\\ ab=c^2\Leftrightarrow\dfrac{b}{c}=\dfrac{c}{a}\left(2\right)\) 

Từ (1) và (2) suy ra: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\)

                                Và \(a+b+c\ne0\)

Áp dụng tính chất dãy tỉ số bằng ta có :

   \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\\ \Rightarrow a=b=c\)

  Ta có :

\(\dfrac{b^{3333}}{a^{1111}.c^{2222}}=\dfrac{b^{3333}}{b^{1111}.b^{2222}}=\dfrac{b^{3333}}{b^{3333}}=1\)

    Vậy \(\dfrac{b^{3333}}{a^{1111}.c^{2222}}=1\)

 

Bình luận (0)
KS
21 tháng 7 2021 lúc 9:11

Bạn ơi \(\dfrac{b^{3333}}{a^{1111}.c^{2222}}\) chứ ạ !

Bình luận (2)
HN
Xem chi tiết
MT
16 tháng 7 2016 lúc 21:10

a+b+c=0

=>a+b=-c;b+c=-a;a+c=-b

Thay a+b=-c;b+c=-a;a+c=-b là M ta được:\(M=\frac{-c}{c}+\frac{-a}{a}+\frac{-b}{b}=-1-1-1=-3\)

Bình luận (0)
OM
Xem chi tiết
NL
29 tháng 10 2019 lúc 14:26

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{ab+bc+ca+c^2}{abc\left(a+b+c\right)}\right)=0\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\) \(\Rightarrow B=0\)

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
LL
2 tháng 2 2021 lúc 16:53
12345:123bằng bao nhiêu
Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
TH
4 tháng 2 2021 lúc 16:53

Chỗ kia là có thêm dấu + nữa nha

Bình luận (0)
NA
4 tháng 2 2021 lúc 17:00

undefined

Bình luận (1)
H24
5 tháng 6 2021 lúc 23:30

*Cách khác

Khá căn bản thôi áp dụng BĐt cosi với 2 số dương

`=>a+(b+c)>=2sqrt{a(b+c)}`

`=>a/(2sqrt{a(b+c)})>=a/(a+b+c)`

`<=>sqrt{a/(b+c)}>=(2a)/(a+b+c)`

CMTT:

`sqrt{b/(c+a)}>=(2b)/(a+b+c)`

`sqrt{c/(a+b)}>=(2c)/(a+b+c)`

`=>sqrt{a/(b+c)}+sqrt{b/(c+a)}+sqrt{c/(a+b)}>=2`

Dấu "=" `<=>a=b=c=0` vô lý vì `a,b,c>0`

Bình luận (0)
NQ
Xem chi tiết
DH
Xem chi tiết
H24
31 tháng 3 2022 lúc 8:22

Đúng : a + b = b + a

(a + b) + c = a + (b + c)

a - 0 = a

Bình luận (0)
HH
31 tháng 3 2022 lúc 8:22

1 2 6

Bình luận (0)
LS
31 tháng 3 2022 lúc 8:26

a, b, g

Bình luận (0)
NM
Xem chi tiết
NA
3 tháng 3 2015 lúc 12:13

<=> \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

<=>\(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)

<=>c(a+b)(a+b+c)=-ab(a+b)

<=>(a+b)(ac+bc+c2)+ab(a+b)=0

<=>(a+b)(ac+bc+ab+c2)=0

<=>(a+b)(a+c)(c+b)=0

       a+b=0

<=> b+c=o

       c+a=0
 

Bình luận (0)
NG
Xem chi tiết
KR
25 tháng 7 2017 lúc 20:27

a) We have :

       a2 + b2 + c2 = ab + bc + ac 

<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ac

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0

<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ac + a2) = 0

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\)

Bình luận (0)
KR
25 tháng 7 2017 lúc 20:40

b) We have :

a2 - 2a + b2 + 4b + 4c2 - 4c + 6 = 0

(a2 - 2a + 1) + (b2 + 2.2b + 4) + (4c2 - 4c + 1) = 0

(a - 1)2 + (b + 2)2 + (2c - 1)2 = 0

\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b+2=0\\2c-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}\)

Bình luận (0)