Cho △ABC nọn nội tiếp (O;R).Gọi M là trung điểm của BC.Tiếp tuyến tại B và C cắt nhau tại E.AE cắt (O) tại D.Chứng minh:GÓC ABD = GÓC AMC
cho tam giác ABC nọn nội tiếp (O),đường kính AD.AD cắt BC tại K.Dây AF vuông góc với BC tại H. Chứng minh :KA.KD=KB.KC,tứ giác BCDF là hình thang cân
Cho tam giác ABC đều cạnh a nội tiếp đường tròn (O). Tính bán kính đường tròn nội tiếp tam giác ABC.
A. r = a 3 3
B. r = a 3 2
C. r = a 3 6
D. r = a 2 3
Chọn đáp án C.
Gọi M là trung điểm của BC:
Do tam giác ABC đều nên tâm đường tròn nội tiếp tam giác ABC là trọng tâm, tâm đường tròn ngoại tiếp tam giác ABC
Áp dụng định lí Pytago vào tam giác ABM ta có:
cho tam giác abc nội tiếp đường tròn (o), I là tâm đường tròn nội tiếp tam giác abc. AI cắt (o) tại M, c/m tam giác MIB cân
Cho tam giác ABC nội tiếp (O). Gọi I là tâm đường tròn nội tiếp tam giác ABC. AI cắt (O) tại P. Chứng mình rằng: PB=PC=PI
cho ΔABC nọn ội tiếp đường tròn O. Các đường co AD,BE,CF cắt nhau tại H.
a)CM các tứ giác BFEC,BFHD nt, xđ tâm và đk của đg tròn
b)Cm:DH là tia phân giác của EDF
c) Kẻ AD cắt BC tại M. Chứng minh tam giác BMH cân
a) Xét tứ giác BFEC có
\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
=> Đường kính là BC, Tâm là trung điểm của BC
Xét tứ giác BFHD có
\(\widehat{BFH}\) và \(\widehat{BDH}\) là hai góc đối
\(\widehat{BFH}+\widehat{BDH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: BFHD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
=> Đường kính là BH và tâm là trung điểm của BH
cho tam giác ABC nội tiếp đường tròn O,đường tròn K tiếp xúc trong vs đtròn O tại T và tiếp xúc 2 cạnh AB,AC tại E,F chưng minh tâm I đtròn nội tiếp tam giác ABC là trung điểm EF
Bổ sung: ΔABC cân tại A
ΔABC cân tại A
=>AO đi qua trug diểm I của EF
Vẽ IK vuông góc AB tại K, gọi H và G lần lượt là giao của OA với BC và(O)
Vì OE vuông góc AB, IK vuông goc AB, GB vuông góc AB
=>OE//IK//GB
ΔABG có IK//GB
nên IK/BG=AI/AG
=>IK=AI*BG/AG
ΔABH có EI//BH
ΔABE có OE//BG
=>IH/AH=BE/BA=OG/AG và AE/AB=AI/AH
=>IH=AH*OE/AE
ΔABG có OE//BG
nên AB/AE=BG/OE
AH/AI=AB/AE=BG/OE
=>AH*OE=AI*BG
=>AH*OG=AI*BG
=>IK=IH
=>ĐPCM
Cho △ABC nội tiếp đường tròn (O); M là điểm chính giữa cung nhỏ BC, gọi I là tâm đường tròn nội tiếp △ABC. CMR: MB=MC=MI
Bài 6: Cho tam giác ABC nội tiếp (O) . Phân giác  cắt (O) tại D Trên AD lấy I sao cho DI = BD. Chứng minh: I là tâm dường tròn nội tiếp tam giác ABC
Vì DI = DB (gt) nên tam giác DIB cân tại D
Suy ra: \(\widehat{DIB}=\widehat{DBI}\) => \(\widehat{BAD}+\widehat{ABI}=\widehat{IBC}+\widehat{DBC}\)
Mà AD là phân giác góc BAC nên cung BD = cung CD
Ta có: BAD là góc nội tiếp chắn cung BD
DBC là góc nội tiếp chắn cung CD
Do đó: \(\widehat{BAD}=\widehat{DBC}\Rightarrow\widehat{ABI}=\widehat{IBC}\)
=> BI là phân giác của góc ABC
Lại có: AI là phân giác góc BAC
Vậy I là tâm đường tròn nội tiếp tam giác ABC (Đpcm)