Những câu hỏi liên quan
CC
Xem chi tiết
DV
Xem chi tiết
TL
Xem chi tiết
NT
25 tháng 3 2023 lúc 13:35

a: góc KPM=góc KPB+góc MPN=45 độ+góc BNH

góc HMN=góc HMA+góc NMA=45 độ+góc HMA

mà góc BNH=góc HMA

nên góc KPM=góc HMN

b: ΔMNP vuông cân tại M

mà MA là trung tuyến

nên MA=AP

=>ΔMAP cân tại M

Bình luận (0)
PS
Xem chi tiết
NA
7 tháng 6 2016 lúc 21:25

Xét tam giác PAB ta có:

PA = PB (gt)

-> tam giác PAB cân tại P 

-> góc PAB = góc PBA ( tính chất tam giác cân )

Xét tam giác MNP cân tại P , ta có:

góc M= góc N ( tính chất tam giác cân )

Xét tam giác PAB ta có:

Góc P+ PAB + PBA = 180 độ ( định lí tổng 3 góc trong tam giác )

mà PAB=PBA (cmt)

-> PAB = \(\frac{180-P}{2}\left(1\right)\)

Xét tam giác PMN, ta có:

P + M +N = 180 độ ( định lí tổng 3 góc trong tam giác )

-> M = \(\frac{180-P}{2}\left(2\right)\)

Từ (1) và (2) -> PAB = M 

mà PAB và M là 2 góc đồng vị

-> AB // MN ( dấu hiệu nhận biết 2 đường thẳng song song)

Xét tứ giác MABN ,ta có:

AB // MN 

-> MABN là hình thang có 2 góc M và N kề 1 đáy bằng nhau

Bình luận (0)
CC
Xem chi tiết
MC
Xem chi tiết
NZ
Xem chi tiết
TH
22 tháng 3 2022 lúc 19:42

-Lưu ý: Chỉ mang tính chất tóm tắt lại bài làm, bạn không nên trình bày theo!

a) △MNP vuông tại M \(\Rightarrow MN^2+MP^2=NP^2\Rightarrow NP^2=\sqrt{MN^2+MP^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

△MNP có: ND phân giác.\(\Rightarrow\dfrac{DM}{DP}=\dfrac{NM}{NP}\)

\(\Rightarrow\dfrac{DM}{NM}=\dfrac{DP}{NP}=\dfrac{DM+DP}{NM+NP}=\dfrac{MP}{NM+NP}\)

\(\Rightarrow DM=\dfrac{MP.NM}{NM+NP}=\dfrac{4.3}{3+5}=1,5\left(cm\right)\)

\(\Rightarrow DP=\dfrac{MP.NP}{NM+NP}=\dfrac{4.5}{3+5}=2,5\left(cm\right)\)

b) △MNH∼△PNM (g-g) \(\Rightarrow\dfrac{MN}{PN}=\dfrac{NH}{NM}\)

△MNH có: NK phân giác \(\Rightarrow\dfrac{NH}{NM}=\dfrac{KH}{KM}=\dfrac{MN}{PN}=\dfrac{DM}{DP}\)

c) △MND∼HNK (g-g) \(\Rightarrow\widehat{MDN}=\widehat{HKN}=\widehat{MKD}\)\(\dfrac{NM}{NH}=\dfrac{ND}{NK}\Rightarrow NH.ND=NM.NK\)

\(\Rightarrow\)△MDK cân tại M

 

Bình luận (0)
NT
Xem chi tiết
TT
23 tháng 6 2020 lúc 22:08

M P N 3 4 A C G

a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ

\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)

THAY\(NP^2=4^2+3^2\)

\(NP^2=16+9\)

\(NP^2=25\)

\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)

XÉT \(\Delta MNP\)

\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)

\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)

B) xét \(\Delta\text{ CPM}\)\(\Delta\text{CPA}\)

 \(PM=PA\left(GT\right)\)

\(\widehat{MPC}=\widehat{APC}=90^o\)

PC LÀ CAH CHUNG 

=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)

Bình luận (0)
 Khách vãng lai đã xóa
TT
23 tháng 6 2020 lúc 22:53

c)

\(\Delta CPM=\Delta CPA\left(cmt\right)\)

\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)

\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)

             \(\widehat{NMC}+\widehat{CMP}=90^o\)

\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)

\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)

\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)

\(\Rightarrow\Delta NMC\text{ cân}\)

\(\Rightarrow CN=CM\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
TT
23 tháng 6 2020 lúc 23:14

d)\(\Delta AMC\)CÂN\(\Rightarrow AC=MC\)

    \(\Delta MCN\)CÂN\(\Rightarrow MC=CN\)

=> AC=CN 

=> AC LÀ TRUNG TUYẾN CỦA \(\Delta MAN\)

MÀ MP=AP => NP LÀ TRUNG TUYẾN CỦA\(\Delta MAN\)

HAI ĐƯOG TRUNG TUYẾN NÀY CẮT NHAU TẠI G 

=> G LÀ TROG TÂM CỦA \(\Delta MAN\)

\(\Rightarrow NG=\frac{2}{3}NP\)

THAY \(\Rightarrow NG=\frac{2}{3}.5=\frac{10}{3}\approx3,3\left(cm\right)\)

Bình luận (1)
 Khách vãng lai đã xóa
Xem chi tiết