Những câu hỏi liên quan
PB
Xem chi tiết
CT
1 tháng 6 2019 lúc 2:07

 Mệnh đề đảo “Nếu x = 1 thì  x 2  thì x =1” là đúng.

Bình luận (0)
HH
Xem chi tiết
H24
29 tháng 7 2021 lúc 9:12

bằng còn cái nịt

Bình luận (0)
 Khách vãng lai đã xóa
HH
Xem chi tiết
NP
Xem chi tiết
TC
7 tháng 10 2021 lúc 14:40

Ta có:

Đặt \(A=x+y+\dfrac{1}{x}+\dfrac{1}{y}\)

\(\Leftrightarrow A=x+y+\dfrac{4}{4x}+\dfrac{4}{4y}\)

\(\Leftrightarrow A=x+y+\dfrac{1}{4x}+\dfrac{3}{4x}+\dfrac{1}{4y}+\dfrac{3}{4y}\)

\(\Leftrightarrow A=\left(x+\dfrac{1}{4x}\right)+\left(y+\dfrac{1}{4y}\right)+\left(\dfrac{3}{4x}+\dfrac{3}{4y}\right)\)

\(\Rightarrow A\ge2\sqrt{x.\dfrac{1}{4x}}+2\sqrt{y.\dfrac{1}{4y}}+\dfrac{3}{4}.\dfrac{4}{x+y}\)

\(\ge2.\sqrt{\dfrac{1}{4}}+2\sqrt{\dfrac{1}{4}}+\dfrac{3}{4}.\dfrac{4}{1}\)

\(=2.\dfrac{1}{2}+2.\dfrac{1}{2}+3=1+1+3=5\)

Vậy ta có đpcm. Dấu"=" xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4x}\\y=\dfrac{1}{4y}\\x=y\\x+y=1\end{matrix}\right.\) \(\Leftrightarrow x=y=\dfrac{1}{2}\left(tm\right)\)

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 3 2019 lúc 10:06

Chọn đáp án D.

Bình luận (0)
TA
Xem chi tiết
NL
26 tháng 12 2020 lúc 20:18

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^3+30xy=2000\)

\(\Leftrightarrow2\left[\left(x+y\right)^3-1000\right]-3xy\left(x+y-10\right)=0\)

\(\Leftrightarrow2\left(x+y-10\right)\left[\left(x+y\right)^2-10\left(x+y\right)+100\right]-3xy\left(x+y-10\right)=0\)

\(\Leftrightarrow\left(x+y-10\right)\left[2\left(x+y\right)^2-20\left(x+y\right)+200-3xy\right]=0\)

\(\Leftrightarrow x+y=10\)

Do:

\(2\left(x+y\right)^2-20\left(x+y\right)+200-3xy\)

\(=\left(x+y-10\right)^2+\left(x+y\right)^2-3xy+100\)

\(=\left(x+y-10\right)^2+\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+100>0\)

Bình luận (1)
NP
Xem chi tiết
TC
9 tháng 10 2021 lúc 11:12

Đặt \(A=x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)

\(\Leftrightarrow A=x+y+z+\dfrac{9}{9x}+\dfrac{9}{9y}+\dfrac{9}{9z}\)

\(\Leftrightarrow A=x+y+z+\dfrac{1}{9x}+\dfrac{8}{9x}+\dfrac{1}{9y}+\dfrac{8}{9y}+\dfrac{1}{9z}+\dfrac{8}{9z}\)

\(\Leftrightarrow A=\left(x+\dfrac{1}{9x}\right)+\left(y+\dfrac{1}{9y}\right)+\left(z+\dfrac{1}{9z}\right)+\left(\dfrac{8}{9x}+\dfrac{8}{9y}+\dfrac{8}{9z}\right)\)

\(\Leftrightarrow A=\left(x+\dfrac{1}{9x}\right)+\left(y+\dfrac{1}{9y}\right)+\left(z+\dfrac{1}{9z}\right)+\dfrac{8}{9}.\left(\dfrac{1^2}{x}+\dfrac{1^2}{y}+\dfrac{1^2}{z}\right)\)

\(\Rightarrow A\ge2\sqrt{x.\dfrac{1}{9x}}+2\sqrt{y.\dfrac{1}{9y}}+2\sqrt{z.\dfrac{1}{9z}}+\dfrac{8}{9}.\dfrac{\left(1+1+1\right)^2}{x+y+z}\)

\(\Rightarrow A\ge2\sqrt{\dfrac{1}{9}}+2\sqrt{\dfrac{1}{9}}+2\sqrt{\dfrac{1}{9}}+\dfrac{8}{9}.\dfrac{3^2}{1}\)

\(\Rightarrow A\ge2.\dfrac{1}{3}.3+8=2+8=10\)

Vậy ta có BĐT cần chứng minh.

Dấu\("="\) xảy ra\(\Leftrightarrow x=y=z=\dfrac{1}{3}\)

 

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 7 2017 lúc 4:50

Chọn D.

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 1 2019 lúc 2:46

Đáp án B

Ta có 

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 7 2018 lúc 9:40

Bình luận (0)