cho tam giác DEF cân tại D,tia phân giác của góc D cắt EF tại H.Cho DH= 3cm;DF=5cm,khi đó độ dài EF là
Bài 1 : Cho tam giác DEF cân tại D có đường trug tuyến DI ( I thuộc EF ) . Biết DE = 10cm , EF = 12cm
a ) Tính DI
b ) Gọi G là trọng tâm của tâm giác DEF .Tính GD
Bài 2 : Cho tam giác ABC vuông tại A . Tia phân giác của góc ABC cắt AC tại D . Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K
a ) CM : AD = DH
b ) So sánh độ dài AD và DC
c ) CM : Tam giác KBC là tam giác cân
Bạn nào giải đúng và nhanh thì mk sẽ tik cho nha
2)
a) Xét 2 tam giác DHB và tam giác DAB có:
\(\widehat{DAB}=\widehat{DHB}\)
DB là cạnh chung
\(\widehat{ABD}=\widehat{HBD}\)
\(\Rightarrow\Delta DAB=\Delta DHB\left(g-c-g\right)\)
\(\Rightarrow AD=DH\)
b) AB=BH (\(\Delta ADB=\Delta DBH\)
=> tam giác ABH cân tại B ( DB là đường p/g; đường trung tuyến )
=> \(\widehat{KDB}=\widehat{CDB}\)( \(\widehat{CDH}=\widehat{KDA}\)đối đỉnh)
=> \(\widehat{HDB}=\widehat{ADB}\)(theo câu a)
\(\Rightarrow\Delta KDA=\Delta CDH\left(g-c-g\right)\Rightarrow CH=KA\)
=> cạnh CD> cạnh AD (vì CD là cạnh huyền
c) HB=BA và CH=KA
=> KB=BC => tam giác KBC cân tại B
Cho tam giác DEF vuông tại D trên EF lấy k sao cho EK=ED tia phân giác của góc E cắt DE tại H a, chứng minh DH=HK b, Tính góc EKH
a: Xét ΔEDH và ΔEKH có
ED=EK
\(\widehat{DEH}=\widehat{KEH}\)
EH chung
Do đó: ΔEDH=ΔEKH
Suy ra: DH=DK
b: Ta có: ΔEDH=ΔEKH
nên \(\widehat{EDH}=\widehat{EKH}\)
hay \(\widehat{EKH}=90^0\)
Cho tam giác DEF vuông tại D ,có góc DEF = 60độ ,EC là tia phân giác của góc E (C thuộc DF).Từ C ,vẽ CH vuông góc với EF (h thuộc EF).
a/ c/m tam giác DCE =tam giác HCE.
b/ Cạnh CH kéo dài cắt tia ED tại K . c/m △CKF cân tại C
a: Xét ΔEDC vuông tại D và ΔEHC vuông tại H có
EC chung
góc DEC=góc HEC
=>ΔEDC=ΔEHC
b: Xét ΔCDK vuông tại D và ΔCHF vuông tại H có
CD=CH
góc DCK=góc HCF
=>ΔCDK=ΔCHF
=>CK=CF
=>ΔCKF cân tại C
a> ta có : góc E = góc F = 400 ( vì tam giác DEF cân tại D)
Tam giác DEF có : góc D+ góc E + góc F = 1800
góc D + 400 +400 = 1800
\(\Rightarrow\)góc D = 1800 - 400-400= 1000
b> Xét tam giác DEM và tam giác DFM có:
AM : cạnh chung
EDM = FDM( vì DM là phân giác của góc D)
DE=DF ( vì tam giác DEF cân tại D)
Do đó : tam giác DEM = tam giác DFM ( c.g.c)
a) Xét tam giác DEF cân tại D có:
∠E=∠F= 40°(Tính chất của tam giác cân)
Ta có : ∠D+∠E+∠F=180°( Tổng 3 góc của 1 tam giác)
=>∠A+40°+40°=180°
∠A=180°-(40°+40°)
=> ∠A =100°
b)
GT: ΔDEF cân tại D
DM là tia phân giác góc D
KL: ΔDEM=ΔDFM
Chứng minh:
Xét ΔDEM và ΔDFM có:
DM (cạnh chung)
∠D1=∠D2
DE=DF (ΔDEF cân )
=>ΔDEM = ΔDFM (c.g.c)
tam giác DEF cân tại D có DE=DF=5cm, EF=6cm. Tia phân giác của góc E cắt DF tại M, phân giác của góc F cắt DE tại N. Tính DM. Tính tỉ số diện tích của ∆DMN và ∆DEF
a) Xét ΔDEF có
EM là đường phân giác ứng với cạnh DF(gt)
nên \(\dfrac{DM}{DE}=\dfrac{MF}{EF}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{DM}{5}=\dfrac{MF}{6}\)
mà DM+MF=DF(M nằm giữa D và F)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DM}{5}=\dfrac{MF}{6}=\dfrac{DM+MF}{5+6}=\dfrac{DF}{11}=\dfrac{5}{11}\)
Do đó:
\(\dfrac{DM}{5}=\dfrac{5}{11}\)
hay \(DM=\dfrac{25}{11}cm\)
Vậy: \(DM=\dfrac{25}{11}cm\)
Cho tam giác DEF vuông tại D có DE=6cm, DF=8cm. Vẽ DH vuông góc với EF tại H a,chứng minh tam giác HED đồng dạng với tam giác DEF b,tính EF,DH c, vẽ DI là phân giác của góc EDH cắt EH tại I. Tính IE, IH
a) xét ΔHED và ΔDEF có
\(\widehat{EHD}=\widehat{EDF}=\)90o
\(\widehat{E} chung\)
=> ΔHED ∼ ΔDEF (gg)
b) Xét ΔDEF có \(\widehat{D}=\)90o
=> DE2+DF2=EF2
=>62+82=EF2
=> EF=10 cm
SΔDEF=\(\dfrac{ED.DF}{2}=\dfrac{DH.EF}{2}\)=> ED.DF=DH.EF => 6.8=DH.10
=> DH =4,8 cm
c) Xét ΔDEH có \(\widehat{EHD}=90\)o
=> HD2.HE2=ED2
=>4.82+HE2=62
=> HE=3.6
ta lại có DI là phân giác
=> \(\dfrac{EI}{IH}=\dfrac{ED}{HD}\)
=>\(\dfrac{EI}{EH-EI}=\dfrac{6}{4.8} \)=>\(\dfrac{EI}{3.6-EI}=\dfrac{6}{4.8}\)=>EI=2
=> IH=EH-EI=3.6-2=1.6
a) Xét ΔHED vuông tại H và ΔDEF vuông tại D có
\(\widehat{HED}\) chung
Do đó: ΔHED\(\sim\)ΔDEF(g-g)
b) Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:
\(EF^2=DE^2+DF^2\)
\(\Leftrightarrow EF^2=6^2+8^2=100\)
hay EF=10(cm)
Ta có: ΔHED\(\sim\)ΔDEF(cmt)
nên \(\dfrac{DH}{FD}=\dfrac{ED}{EF}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow DH=\dfrac{DE\cdot DF}{EF}=\dfrac{6\cdot8}{10}=\dfrac{48}{10}=4.8\left(cm\right)\)
Vậy: EF=10cm; DH=4,8cm
Cho tam giác DEF. Tia phân giác của góc E cắt DF tại M. Qua D kẻ đường thẳng vuông góc với DE, đường thẳng này cắt tia EM tại N và cắt tia EF tại P. Chứng minh rằng:
a) Tam giác DNF cân
b) NF vuông góc với EF
c) Tam giác DEP cân
Cho tam giác DEF vuông tại D, có DEF=60 độ ,EC là tia phân giác của góc E (C thuộc DF). Từ C, vẽ CH vuông góc EF (H thuộc EF)
a) Chứng minh: tam giác DCE= tam giác HCE
b) Cạnh CH kéo dài cắt tia ED tại K. Chứng minh: tam giác CKF cân tại C
c) chứng minh: DH<CF
a: Xét ΔEDC vuông tại D và ΔEHC vuông tại H có
EC chung
\(\widehat{DEC}=\widehat{HEC}\)
Do đó; ΔEDC=ΔEHC
b: Xét ΔDCK vuông tại D vàΔHCF vuông tại H có
CD=CH
\(\widehat{DCK}=\widehat{HCF}\)
Do đó; ΔDCK=ΔHCF
Suy ra: CK=CF
a, Xét Δ DCE và Δ HCE, có :
EC là cạnh chung
\(\widehat{CDE}=\widehat{CHE}=90^o\)
\(\widehat{DEC}=\widehat{HEC}\) (EC là tia phân giác \(\widehat{DEH}\))
=> Δ DCE = Δ HCE (g.c.g)
=> DC = HC
b, Xét Δ DCK và Δ HCF, có :
DC = HC (cmt)
\(\widehat{DCK}=\widehat{HCF}\) (đối đỉnh)
=> Δ DCK = Δ HCF ( ch - cgn)
=> CK = CF
=> Δ CKF cân tại C
Cho tam giác đều DEF. Tia phân giác của góc E cắt cạnh DF tại M. Qua D kẻ đường thẳng vuông góc với DE, đường thẳng này cắt tia EM tại N và cắt tia EF tại P. Chứng minh rằng
a/ Tam giác DNF cân
b/ NF vuông góc với EF
c/ Tam giác DEP cân
a: Xet ΔDEN và ΔFEN có
ED=EF
góc DEN=góc FEN
EN chung
=>ΔDEN=ΔFEN
=>ND=NF
=>ΔNDF cân tại N
b: ΔDEN=ΔNFE
=>góc NFE=90 độ
=>NF vuông góc EF
c: Xét ΔDEP có
DF là trung tuyến
DF=EP/2
=>ΔDEP vuông tại D