Những câu hỏi liên quan
DH
Xem chi tiết
DH
9 tháng 5 2021 lúc 18:28

giúp mình câu b với các bạn ơi

 

Bình luận (0)
ND
Xem chi tiết
LA
Xem chi tiết
NT
28 tháng 7 2021 lúc 23:13

Bài 10:

a) Xét ΔABE vuông tại E và ΔCBD vuông tại D có 

\(\widehat{DBC}\) chung

Do đó: ΔABE\(\sim\)ΔCBD(g-g)

b) Xét ΔHDA vuông tại D và ΔHEC vuông tại E có 

\(\widehat{AHD}=\widehat{CHE}\)(hai góc đối đỉnh)

Do đó: ΔHDA\(\sim\)ΔHEC(g-g)

Suy ra: \(\dfrac{HD}{HE}=\dfrac{HA}{HC}\)

hay \(HD\cdot HC=HE\cdot HA\)

Bình luận (1)
NT
28 tháng 7 2021 lúc 23:16

Bài 11: 

a) Xét ΔABE vuông tại E và ΔACF vuông tại F có

\(\widehat{FAC}\) chung

Do đó: ΔABE\(\sim\)ΔACF(g-g)

b) Xét ΔFHB vuông tại F và ΔEHC vuông tại E có 

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔFHB\(\sim\)ΔEHC(g-g)

Suy ra: \(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)

hay \(HE\cdot HB=HF\cdot HC\)

c) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

Suy ra: \(\widehat{AEF}=\widehat{ABC}\)

Bình luận (0)
QA
Xem chi tiết
LD
3 tháng 5 2021 lúc 10:30

đó nha bn

Bình luận (0)
 Khách vãng lai đã xóa
VN
3 tháng 5 2021 lúc 10:33

a,Xét tg DHB và tg DCA có: ^HDB=^CDA=90 độ, ^DBH=^DAC ( cùng phụ với hai góc bằng nhau BHD=^AHE)

Do đó: tg HDB đồng dạng tg DCA (g.g)

Suy ra: HD/DC=BD/DA-> bd*dc=dh*da

b, HD/HA=SBHC/SABC

HE/BE=SAHC/SABC

HF/CF=SHAB/SABC

HD/HA+HE/BE+HF/CF=SBHC/SABC+SAHC/SABC+SAHB/SABC=1

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
EN
Xem chi tiết
CN
Xem chi tiết
VT
1 tháng 8 2018 lúc 12:37

Ta có: S \(\Delta\)ABC =\(\frac{AD\cdot BC}{2}\)

Hay     30 =\(\frac{AD\cdot5}{2}\)       

=>       AD =12 (cm)

Mặt khác: \(\widehat{HBD}\)+\(\widehat{BHD}\)=90 (\(\Delta\)BHD vuông tại D)

            \(\widehat{DAC}\)+\(\widehat{AHE}\)=90 (\(\Delta\)AHE vuông tại E)

Mà:      \(\widehat{BHD}\)=\(\widehat{AHE}\)( 2 góc đối đỉnh )

=>        \(\widehat{HBD}\)=\(\widehat{DAC}\)

Xét \(\Delta\)BHD và \(\Delta\)ADC có:

        \(\widehat{BDH}\)\(\widehat{ADC}\)  ( = 90*)

         \(\widehat{HBD}\)\(\widehat{DAC}\)( cmt )

=> \(\Delta BHD\)đồng dạng với \(\Delta ACD\)( g-g )

=> \(\frac{BD}{AD}=\frac{HD}{CD}\)

=>  BD.CD = AD.HD

=> 6 = 12.HD

=> HD = 1/2 (cm)

Vậy S\(\Delta BHC\)=\(\frac{BC\cdot HD}{2}\)=\(\frac{5\cdot0,5}{2}\)=1,25 (cm2)

Bình luận (0)
LA
Xem chi tiết
H24
Xem chi tiết
NT
11 tháng 3 2023 lúc 14:05

a: Xét ΔAHF vuông tại F và ΔABD vuông tại D có

góc HAF chung

=>ΔAHF đồng dạng vơi ΔABD

=>AH/AB=AF/AD

=>AH/AF=AB/AD

b: Xét ΔAHB và ΔAFD có

AH/AF=AB/AD

góc HAB chung

=>ΔAHB đồng dạng với ΔAFD

Bình luận (1)