Nhanh với ạ
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O; R). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H.Chứng minh tứ giác BFECnội tiếpTia AO cắt đường tròn (O) tại K. Chứng minh AC = AK. AD;Gọi M là trung điểm của BC. Chứng minh ba điểm H, M, K thẳng hàng.Cho BC cố định, A chuyển động trên cung lớn BC sao cho tam giác ABC có ba góc nhọn, chứng minh diện tích hình tròn ngoại tiếp tam giác AEF không đổi.
cho tam gics ABC có ba góc nhọn, nội tiếp đường tròn tâm O (AB<AC). Các đường cao AD và CF của tam gics ABC cắt nhau tại H.
a) chứng minh tứ giác BFHD nội tiếp. Suy ra góc AHC= 180-ABC
b) gọi M là điểm bất kì trên cung nhỏ BC của đường tròn (O) (M khác B và C) và N là điểm đối xứng của M qua AC. Chứng minh tứ giác AHCN nội tiếp
c) gọi I là giao điểm của AM và HC: J là giao điểm của AC và HN. Chứng minh góc AJI= ANC
Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn tâm O (AB < AC). Các đường cao AD và CF của tam giác ABC cắt nhau tại H.
a. Chứng minh tứ giác BFHD nội tiếp. Suy ra góc AHC = 180o - ABC.
b. Gọi M là điểm bất kì trên cung nhỏ BC của đường tròn (O) (M khác B và C) và N là điểm đối xứng của M qua AC. Chứng minh tứ giác AHCN nội tiếp.
c. Gọi I là giao điểm của AM và HC; J là giao điểm của AC và HN. Chứng minh góc AJI = ANC.
d. Chứng minh rằng: OA vuông góc với IJ.
Cho tam giác ABC vuông tạiA.Tia phân giác của góc B cắt AC tại Đ.KẻH vuông góc với BC tại H a chứng minh tam giác ABD=tâm giác HBD b Hai đường thẳng DH và AB cắt nhau tại E.Chứng mình tam giác BEC cân c chứng minh AD bé hơn DC
cho tam giác ABC cân tại A, có góc A là góc nhọn. Vẽ hai đường cao AD và BE cắt nhau tại H (D thuộc BC, E thuộc AC).
a) chứng minh tam giác ABC = tam giác ACD
b) đường thẳng CH cắt AB tại F. Chứng minh CF là đường cao của tam giác ABC
c) chứng minh EF //BC
Cho tam giác ABC nhọn có AB<AC và nội tiếp đươngf tròn O đường kính AD. Gọi AH là đường cao của tam giác ABC. Qua B kẻ đường thẳng vuông góc với đường thẳng AD tại E.
a) cm: 2 HE vuong góc với AC
b) gọi F là hình chiếu vuông góc của điểm C lên đường thẳng AD và M là trung điểm của BC. Chứng minh M là tâm dường tròn ngoại tiếp tam giác HEF
Câu 3 (3 điểm): Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt cạnh AC tại D. Kẻ DH vuông góc với BC tại H.
a, Chứng minh rABD =rHBD
b, Hai đường thẳng DH và AB cắt nhau tại E. Chứng minh rBEC cân.
c, Chứng minh AD < DC.
Cho tam giác ABC cân tại A, có góc BAC nhọn. Qua A vẽ tia phân giác của góc BAC cắt cạnh BC tại D. a) Chứng minh ΔABD = ΔACD. b) Vẽ đường trung tuyến CF của tam giác ABC cắt cạnh AD tại G. Chứng minh G là trọng tâm của tam giác ABC. c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh ΔDEC cân. d) Chứng minh ba điểm B, G, E thẳng hàng và AD > BD.
Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng
\(a, \frac {AB+AC}{2}\)
\(b,BE+CF < \frac{3}{2}BC\)
\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)
Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN
Bài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB
Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .
Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB