Dựng tam giác ABC biết \(\widehat{B}=80^0;BC=3cm,AB+AC=5cm\)
Dựng tứ giác ABCD, biết AB = 2cm, AD = 3cm, \(\widehat{A}=80^0,\widehat{B}=120^0,\widehat{C}=100^0\)
Dựng tam giác ABC, biết \(\widehat{B}=40^0,BC=4cm,AC=3cm\)
Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau ở I. Tính \(\widehat{BIC}\) biết rằng :
a) \(\widehat{B}=80^0,\widehat{C}=40^0\)
b) \(\widehat{A}=80^0\)
c*) \(\widehat{A}=m^0\)
So sánh các cạnh của tam giác ABC biết \(\widehat{A}=80^0,\widehat{C}=40^0\) ?
Giải:
Ta có: \(\widehat{A}=80^0\)
\(\widehat{C}=40^0\)
\(\Leftrightarrow\widehat{B}=180^0-80^0-40^0=60^0\) (Tổng ba góc của một tam giác)
Suy ra: \(\widehat{A}>\widehat{B}>\widehat{C}\)
\(\Leftrightarrow BC>AC>AB\) (Tính chất giữa góc và cạnh đối diện)
Vậy ...
So sánh các cạnh của tam giác ABC biết :
\(\widehat{A}=80^0;\widehat{B}=45^0\)
Tam giác ABC có = 800; = 450
Nên = 1800 – (800 + 450) = 550
(theo định lý tổng ba góc trong tam giác)
Vì 450 < 550 < 800 hay < < => AC < AB < BC
2. So sánh các cạnh của tam giác ABC, biết rằng:
ˆAA^ = 800 , ˆBB^ = 800
Tam giác ABC có ˆAA^ = 800; ˆBB^ = 450
Nên ˆCC^ = 1800 – (800 + 450) = 550
(theo định lý tổng ba góc trong tam giác)
Vì 450 < 550 < 800 hay ˆBB^ < ˆCC^ < ˆAA^ => AC < AB < BC
Trong tam giác ABC có
^A + ^B + ^C =1800(tổng ba góc trong tam giác)
hay 800+450+^C = 1800
suy ra ^C=1800-(800+450)=550
Tam giác ABC có
^A>^C>^B(800>550>450)
nên BC > AB > AC (quan hệ giữa cạnh và góc đối diện)
Dựng tam giác ABC vuông tại A, biết cạnh huyền BC = 5cm và \(\widehat{B}=35^0\) ?
Dựng tam giác ABC vuông tại A, biết cạnh huyền BC = 4cm, góc nhọn \(\widehat{B}=65^0\)
Bài giải:
Sử dụng phương pháp dựng tam giác vuông đã được học.
Ta lần lượt thực hiên:
- Vẽ đoạn BC = 4cm.
- Vẽ tia Bx tạo với BC một góc 650
- Vẽ đường thẳng a qua C và vuông góc với Bx và cắt Bx tại A.
Khi đó ∆ABC là tam giác cần dựng.
1) Cho tam giác ABC, tia AD là tia phân giác của \(\widehat{A}\), biết \(\widehat{ADB}\)= \(80^0\), \(\widehat{B}\)= \(\frac{3}{2}\)\(\widehat{C}\). Tính các góc của tam giác ABC
2) Cho tam giác ABC có \(\widehat{A}\)= \(80^0\). Tia phân giác của \(\widehat{B}\)và \(\widehat{C}\) cắt nhau tại I. Tính \(\widehat{BIC}\)
Do AD là tia phân giác A => \(\widehat{A_1}=\widehat{A}_2\)
Xét tam giác ADB có:\(\widehat{A_1}+\widehat{ADB}+\widehat{B}=180\)
Hay A1 + 80 + B = 180 => A1 + B = 100 (1)
Do góc ADB + ADC = 180 (Kề bù)
=> 80+ ADC = 180
ADC = 100
Xét tam giác ADC có: \(\widehat{A_2}+\widehat{ADC}+\widehat{C}=180\)
A2 + 100 + C = 180
A2 + C = 80 (2)
Từ 1, 2, có: A2 + C + 20 = A1 + B = 100
=> A1 + C + 20 = A1 + 3/2C
3/2C - C = 20
=> 1/2C= 20
C= 40
Mà B = 3/2 C => B = 3/2 . 40 = 60
Xét tam giác ABC có: A+B+C = 180
hay A + 60+40=180
A= 80
Vậy ...........
2/
Xét tam giác ABC có : A + B + C = 180 => B+C = 180 - A => B+C = 180 - 80 => B+C = 100
Do BI;CI lần lượt là phân giác của B; C => B1 = B2 = 1/2 B ; C1 = C2 = 1/2 C
Xét tam giác IBC có:
B2+BIC+C2 = 180
(B2+C2) + BIC = 180
1/2 B + 1/2 C + BIC = 180
1/2 ( B+C) +BIC = 180
hay 1/2 . 100 + BIC = 180
BIC = 180 - 50
BIC = 130
Vậy ...
a) cho tam giác ABC có \(\widehat{B}=40^0,\widehat{C}=30^0\). dựng điểm D khác phía với B sao cho \(\widehat{DAC}=\widehat{DCA}=50^0\)
Chứng minh rằng tam giác ABC cân.
b) chứng minh rằng chu vi một tam giác có các góc nhọn hơn 4 lần bán kính đường tròn ngoại tiếp tam giác.
câu a) mình nghĩ chứng minh ABD cân chứ ạ, sao lại ABC
Gọi H là trung điểm của AC. \(\Delta\)DAC cân tại D.
Do đó DH\(\perp\)AC và AH = \(\frac{1}{2}\)AC (1)
Vẽ AK \(\perp\)BC. Vì \(\Delta\)AKC vuông tại K và ^BCA = 300
nên AK = \(\frac{1}{2}\)AC (2)
Từ (1) và (2) suy ra AK = AH
Xét \(\Delta\)AKB và \(\Delta\)AHD có:
^AKB = ^AHD (=900)
AK = AH(gt)
^BAK = ^DAH (=500)
Do đó \(\Delta\)AKB = \(\Delta\)AHD (g.c.g)
=> AB = AD
Vậy \(\Delta\)ABD cân tại A(đpcm)