Những câu hỏi liên quan
TN
Xem chi tiết
NM
2 tháng 12 2021 lúc 15:50

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

Bình luận (3)
HT
Xem chi tiết
NM
23 tháng 10 2021 lúc 9:46

\(\cos B=\cos50^0=\dfrac{AB}{BC}\approx0,6\Leftrightarrow BC\approx\dfrac{9}{0,6}=15\)

Áp dụng PTG: \(AC=\sqrt{BC^2-AB^2}=12\)

Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{9\cdot12}{15}=7,2\)

Bình luận (0)
NL
Xem chi tiết
GH
6 tháng 7 2023 lúc 15:27

1

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)

Theo pytago xét tam giác ABC vuông tại A có:

\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)

Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:

\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)

2

\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)

Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:

\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)

3

`BC=HB+HC=36+64=100`

Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):

\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)

\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)

Bình luận (0)
RH
Xem chi tiết
NT
12 tháng 7 2023 lúc 19:47

1:

BC=15+20=35cm

AD là phân gíac

=>AB/BD=AC/CD

=>AB/3=AC/4=k

=>AB=3k; AC=4k

AB^2+AC^2=BC^2

=>25k^2=35^2

=>k=7

=>AB=21cm; AC=28cm

AH=21*28/35=16,8cm

\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)

2:

BC=căn 12^2+16^2=20cm

HB=AB^2/BC=12^2/20=7,2cm

HC=20-7,2=12,8cm

Bình luận (0)
DH
Xem chi tiết
H24
Xem chi tiết
LH
4 tháng 8 2016 lúc 8:29
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
Bình luận (0)
LH
4 tháng 8 2016 lúc 8:31

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o

Bình luận (0)
NB
12 tháng 12 2016 lúc 15:30

Cho tam giác ABC vuông tại A , đường cao AH . Chứng minh rằng 1/AH^2=1/AB^2+1/ac^2

Bình luận (0)
NA
Xem chi tiết
AH
9 tháng 8 2021 lúc 20:47

Lời giải:

Áp dụng hệ thức lượng trong tam giác vuông:

$AB^2=BH.BC$

$AC^2=CH.CB$

$\Rightarrow \frac{9}{16}=\frac{BH}{CH}=(\frac{AB}{AC})^2$

$\Rightarrow \frac{AB}{AC}=\frac{3}{4}$

$AC=\frac{4}{3}AB=\frac{4}{3}.24=32$ (cm)

$BC=\sqrt{AB^2+AC^2}=\sqrt{24^2+32^2}=40$ (cm)

$AH=\frac{AB.AC}{BC}=\frac{24.32}{40}=19,2$ (cm)

 

 

Bình luận (0)
AH
9 tháng 8 2021 lúc 20:48

Hình vẽ:

Bình luận (0)
NQ
Xem chi tiết
NT
3 tháng 9 2021 lúc 23:02

Đề 1: 

a: Xét ΔABH vuông tại H có 

\(AB^2=AH^2+HB^2\)

hay HB=18(cm)

Xét ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BC=50\left(cm\right)\\HC=32\left(cm\right)\end{matrix}\right.\)

Xét ΔACH vuông tại H có 

\(AC^2=AH^2+HC^2\)

nên AC=40(cm)

b: Xét ΔAHC vuông tại H và ΔDHB vuông tại H có

\(\widehat{HAC}=\widehat{HDB}\)

Do đó: ΔAHC\(\sim\)ΔDHB

Suy ra: \(\dfrac{AC}{DB}=\dfrac{HC}{HB}\)

hay \(DB=\dfrac{32}{18}\cdot40=\dfrac{640}{9}\left(cm\right)\)

Bình luận (0)
MT
Xem chi tiết
NT
4 tháng 1 2022 lúc 11:32

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

Bình luận (0)
NT
Xem chi tiết
NM
19 tháng 9 2021 lúc 10:10

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)

Bình luận (0)