Những câu hỏi liên quan
NK
Xem chi tiết
NT
2 tháng 10 2021 lúc 22:07

Ta có: \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-3x+8\sqrt{x}-5-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{2}{3}\)

\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}\le0\)

\(\Leftrightarrow A\le\dfrac{2}{3}\)

Bình luận (0)
NN
Xem chi tiết
H24
15 tháng 7 2023 lúc 16:52

A = (15/√x) - (11x + 2√x - 3) - (3√x - 2√x - 1) - (2√x + 3√x - 3)

Tiếp theo, kết hợp các thành phần tương tự:

A = 15/√x - 11x - 2√x + 3 + 3√x - 2√x + 1 - 2√x - 3√x + 3

Đơn giản hóa biểu thức:

A = -11x + 15/√x + 4

Để tìm giá trị lớn nhất của A, ta có thể tìm điểm đạt cực đại của hàm số A(x). Tuy nhiên, để làm điều này, cần biết thêm về giá trị của x.

Bình luận (0)
NT
26 tháng 7 2023 lúc 11:42

 

Sửa đề: (3căn x-2)/căn x-1-(2căn x+3)/(căn x+3)\(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}+\dfrac{-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

\(A=\dfrac{-5\sqrt{x}-15+17}{\sqrt{x}+3}==-5+\dfrac{17}{\sqrt{x}+3}< =\dfrac{17}{3}-5=\dfrac{2}{3}\)

Dấu = xảy ra khi x=0

Bình luận (0)
NK
Xem chi tiết
NT
17 tháng 10 2021 lúc 0:01

a: Ta có: \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\dfrac{15\sqrt{x}-11-\left(3x+7\sqrt{x}-6\right)-\left(2x+\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

Bình luận (0)
KT
Xem chi tiết
H24
Xem chi tiết
NT
28 tháng 3 2023 lúc 22:03

a: \(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{x-9}\)

\(=\dfrac{3x+9\sqrt{x}}{x-9}=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)

b: Khi x=11+6 căn 2 thì \(M=\dfrac{3\left(3+\sqrt{2}\right)}{3+\sqrt{2}-3}=\dfrac{9+3\sqrt{2}}{\sqrt{2}}=\dfrac{9\sqrt{2}+6}{2}\)

c: M<1
=>\(\dfrac{3\sqrt{x}-\sqrt{x}+3}{\sqrt{x}-3}< 0\)

=>căn x-3<0

=>0<x<9

Bình luận (0)
H24
29 tháng 3 2023 lúc 12:16

`a,` \(M=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{3-11\sqrt{x}}{9-x}\) \(\left(x\ne\pm3;x>0\right)\)

\(M=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{x-9}-\dfrac{3+11\sqrt{x}}{x-9}\)

\(M=\dfrac{2x-6\sqrt{x}}{x-9}+\dfrac{x+3\sqrt{x}+\sqrt{x}+3}{x-9}-\dfrac{3+11\sqrt{x}}{x-9}\)

\(M=\dfrac{3x+9\sqrt{x}}{x-9}\)

\(M=\dfrac{3\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}\)

\(M=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)

`b,`Ta có :

 \(M=\dfrac{3\sqrt{11+6\sqrt{2}}}{\sqrt{11+6\sqrt{2}}-3}\)

\(M=\dfrac{3\sqrt{\left(3+\sqrt{2}\right)^2}}{\sqrt{\left(3+\sqrt{2}\right)^2}-3}\)

\(M=\dfrac{3\left(3+\sqrt{2}\right)}{3+\sqrt{2}-3}\)

\(M=\dfrac{9+3\sqrt{2}}{\sqrt{2}}\)

\(M=\dfrac{6+9\sqrt{2}}{2}\)

`c,`  Để `M<1` Ta có :

 \(\dfrac{3\sqrt{x}}{\sqrt{x}-3}< 1\)

\(\dfrac{3\sqrt{x}}{\sqrt{x}-3}-1< 0\)

\(\dfrac{3\sqrt{x}}{\sqrt{x}-3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-3}< 0\)

\(\dfrac{2\sqrt{x}+3}{\sqrt{x}-3}< 0\)

\(\sqrt{x}-3< 0\) ( vì \(2\sqrt{x}+3>0\) )

\(\sqrt{x}< 3\)

\(x< 9\)

Đối chiếu ĐKXĐ ta có : `0<x<9`

 

 

Bình luận (0)
BN
Xem chi tiết
NM
Xem chi tiết
NT
9 tháng 7 2021 lúc 20:43

a) Rút gọn P

ĐKXĐ: \(x\ge0;x\ne1\)

\(P=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)\(-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)\(-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-\left(3x+9\sqrt{x}-2\sqrt{x}-6\right)-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)\(=\dfrac{\left(-5\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)\(=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)

b) Tìm GTLN

\(P=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}=\dfrac{17-5\left(\sqrt{x}+3\right)}{\sqrt{x}+3}=\dfrac{17}{\sqrt{x}+3}-5\)

Ta có: \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3\Rightarrow P=\dfrac{17}{\sqrt{x}+3}-5\le\dfrac{17}{3}-5=\dfrac{2}{3}\)

Dấu "=" xảy ra khi \(x=0\)

Vậy \(P_{max}=\dfrac{2}{3}\) khi \(x=0\)

 

 

Bình luận (0)
H24
Xem chi tiết
CP
17 tháng 7 2021 lúc 17:53

undefined

Bình luận (0)
NT
17 tháng 7 2021 lúc 20:22

a) Ta có: \(P=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-\left(5\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

Bình luận (0)
NT
17 tháng 7 2021 lúc 22:38

b) Để P nguyên thì \(-5\sqrt{x}+2⋮\sqrt{x}+3\)

\(\Leftrightarrow17⋮\sqrt{x}+3\)

\(\Leftrightarrow\sqrt{x}+3=17\)

\(\Leftrightarrow\sqrt{x}=14\)

hay x=196

Bình luận (0)
L2
Xem chi tiết
NM
3 tháng 8 2021 lúc 10:34

\(B=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{11\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\left(x\ne\sqrt{3},x\ge0\right)\)

\(B=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)+11\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(B=\dfrac{x+4\sqrt{x}+3+11\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(B=\dfrac{x+14\sqrt{x}}{x-9}\)

\(M=A+B=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{x+14\sqrt{x}}{x-9}\)

\(M=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+x+14\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{2x-6\sqrt{x}+x+14\sqrt{x}}{x-9}\)

\(M=\dfrac{3x+8\sqrt{x}}{x-9}\)

Bình luận (0)
DL
Xem chi tiết
NT
29 tháng 10 2021 lúc 21:14

a: \(A=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{x-9}\)

\(=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)

Bình luận (0)