Chương I - Căn bậc hai. Căn bậc ba

H24

Cho biểu thức A= \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}\)+\(\dfrac{3\sqrt{x}-2}{1-\sqrt[]{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\)

a, Rút gọc P

b, tìm x để P nhận giá trị nguyên 

CP
17 tháng 7 2021 lúc 17:53

undefined

Bình luận (0)
NT
17 tháng 7 2021 lúc 20:22

a) Ta có: \(P=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-\left(5\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

Bình luận (0)
NT
17 tháng 7 2021 lúc 22:38

b) Để P nguyên thì \(-5\sqrt{x}+2⋮\sqrt{x}+3\)

\(\Leftrightarrow17⋮\sqrt{x}+3\)

\(\Leftrightarrow\sqrt{x}+3=17\)

\(\Leftrightarrow\sqrt{x}=14\)

hay x=196

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
NM
Xem chi tiết
NH
Xem chi tiết
LG
Xem chi tiết
NM
Xem chi tiết
LG
Xem chi tiết
NK
Xem chi tiết
HL
Xem chi tiết
LG
Xem chi tiết