xác định hệ số góc của đường thẳng (d):y=ax+b(a≠0) biết
đường thẳng d đi qua điểm A(3;5)và B(2;3)
Đường thẳng d đi qua điểm A(1;3) và cắt trục tung tại tung độ y=2
Tìm hệ số góc của đường thường `y=ax+b`, biết
Đường thẳng `y=ax+b` đi qua `P(-1;-3)` và đi qua giao điểm của hai đường thẳng `y=x-7;y=-4x+3`
Tọa độ giao điểm của hai đường thẳng y=x-7 và y=-4x+3 là:
\(\left\{{}\begin{matrix}x-7=-4x+3\\y=x-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+4x=7+3\\y=x-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x=10\\y=x-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2-7=-5\end{matrix}\right.\)
Thay x=2 và y=-5 vào y=ax+b, ta được:
a*2+b=-5
=>2a+b=-5(1)
thay x=-1 và y=-3 vào y=ax+b, ta được:
a*(-1)+b=-3
=>-a+b=-3(2)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+b=-5\\-a+b=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3a=-2\\a-b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{2}{3}\\b=a-3=-\dfrac{2}{3}-3=-\dfrac{11}{3}\end{matrix}\right.\)
Vậy: (d): \(y=-\dfrac{2}{3}x-\dfrac{11}{3}\)
xác định hệ số a b của hàm số y=ax+b đi qua góc tọa độ và song song với đường thẳng y=-2x+1 cắt trục tung tạo điểm có tung độ bằng (-3) và cắt đường thẳng d y=3x- có tung độ bằng 1
Đề không rõ ràng. Bạn coi lại đề. Những dữ kiện trên được chia theo phần hay là cả 1 cụm?
Xác định hàm số y=ax+b.Biết đồ thị hàm số:
a)Đi qua điểm A(1;2)vuông góc với đồ thị hàm số \(y=\dfrac{1}{3}x-1\)
b)Là đường thẳng (d) đi qua 2 điểm B(0;-1) và C(3;0).Vẽ (d) và tính góc \(\alpha\) của (d) với trục hoành
a) Vì đồ thị hàm số y=ax+b vuông góc với đồ thị hàm số \(y=\dfrac{1}{3}x-1\) nên \(a\cdot\dfrac{1}{3}=-1\)
\(\Leftrightarrow a=-1:\dfrac{1}{3}=-1\cdot\dfrac{3}{1}=-3\)
Vậy: Hàm số có dạng y=-3x+b
Vì đồ thị hàm số y=-3x+b đi qua điểm A(1;2) nên
Thay x=1 và y=2 vào hàm số y=-3x+b, ta được:
\(-3\cdot1+b=2\)
\(\Leftrightarrow b-3=2\)
hay b=5
Vậy: Hàm số có dạng y=-3x+5
Cho đường thẳng (d) có pt :ax+(2a-1)y+3=0.Tìm a để đường thẳng (d) đi qua điểm M(1;-1).Khi đó hãy tìm hệ số góc của đường thẳng (d)
Thay \(x=1;y=-1\) vào phương trình đường thẳng \(\left(d\right)\) , ta có:
\(a\cdot1+-1\left(2a-1\right)+3=0\)
\(\Leftrightarrow a-2a+1+3=0\)
\(\Leftrightarrow a-2a+4=0\)
\(\Leftrightarrow\left(a-1\right)^2+2=0\) (vô lí do \(\left(a-1\right)^2+2\ge2>0\forall a\)
Do đó phương trình ban đầu vô nghiệm
Vậy đường thẳng \(\left(d\right)\) không đi qua điểm M
Xác định phương trình của đường thẳng (d):y=ax+b biết đường thẳng (d) đi qua điểm A(-1;2) và điểm B(3; -2).
Bài 1 :Giả sử đường thẳng (d) có phương trình y=ax+b . Xác định a,b để (d) đi qua hai điểm A(1;3) và B(-3;-1)
Bài 2 Cho hàm số y=x+m (d). Tìm các giá trị của m để đường thẳng (d)
1, Đi qua điểm A(1;2003)
2, Song song với đường thẳng x-y+3=0
Xác định hàm số bậc nhất y= ax+b ,biết
a, hệ số góc bằng 2 và đồ thị hàm số đi qua A( 1;2)
b,đồ thị hàm số đi qua điểm A(-2;2) và cắt đường thẳng (d) y=-2x+4 tại điểm có hoành độ bằng 3
a) Hệ số góc bằng 2
=> a=2
Đồ thị hàm số đi qua A (1; 2)
=> 2=a.1+b<=> 2=2.1+b <=> b=0
Vậy hàm số: y=2x
b)
+) Đồ thị hàm số đi qua điểm A (-2; 2)
=> 2=a. (-2)+b <=> -2a+b=2 (1)
+) Đồ thị hàm số cắt đường thẳng (d) y=-2x+4 tại điểm có hoành độ bằng 3
Gọi điểm đó là: B(3; y)
(d) qua B(3; y) => y=-2.3+4=-2
=> B(3; -2)
đồ thị hàm số qua B => -2=a.3+b <=> 3a+b=-2 (2)
Từ (1); (2) ta có:a=-4/5, b=2/5
Vậy: y=-4/5 x+2/5
xác định hằng số a;b của đường thẳng y=ax+y biết d đi qua hai điểm A(-1;2),B(2;-3).
Vì (d) đi qua hai điểm A(-1;2) và B(2;-3) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=2\\2a+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=5\\a-b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{5}{3}\\b=a+2=\dfrac{-5}{3}+2=\dfrac{1}{3}\end{matrix}\right.\)
xác định hệ số a,b của hàm số y=ax+b, biết đồ thị (d) của hàm số đi qua điểm A (2;-2) và song song với đường thẳng y=1/2x + 1
Lời giải:
$(d)$ song song với $y=\frac{1}{2}x+1$ nên $a=\frac{1}{2}$
$A\in (d)$ nên:
$y_A=ax_A+b$
$\Leftrightarrow -2=a.2+b$
$\Leftrightarrow -2=\frac{1}{2}.2+b$
$\Leftrightarrow b=-3$
Vậy $a=\frac{1}{2}; b=-3$