Những câu hỏi liên quan
LS
Xem chi tiết
NT
31 tháng 8 2021 lúc 13:36

Vì (d): y=ax+b song song với y=-2x+5

nên a=-2

Vậy: (d): y=-2x+b

a: Thay x=0 và y=0 vào (d), ta được:

\(-2\cdot0+b=0\)

hay b=0

b: Thay x=1 và y=10 vào (d), ta được:

\(-2\cdot1+b=10\)

hay b=12

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
MN
3 tháng 6 2021 lúc 15:32

c) 

(d) vuông góc với (d') : y = 2x 

=> (d) có dạng : y = -2x + b 

(d) đi qua M (3,5) : 

5 = (-2) . 3 + b 

=> b = 10

(d) : y = -2x + 10 

Bình luận (0)
MN
3 tháng 6 2021 lúc 15:36

d) 

Gọi : hàm số có dạng : y = ax + b 

Hàm số đi qua điểm A ( 1,2) , B(2,1) nên : 

\(\left\{{}\begin{matrix}2=a+b\\1=2a+b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\)

Bình luận (0)
MN
3 tháng 6 2021 lúc 15:38

e) 

(d) đi qua gốc tọa độ O : 

=> d : y = ax 

(d) đi qua điểm A(1;2) nên : 

2 = a * 1 

=> a = 2 

(d) : y = 2x 

 

Bình luận (0)
H24
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
NT
31 tháng 1 2022 lúc 17:01

Gọi \(I\) là tâm nằm trên đường trung trực \(OA\)

 \(\Rightarrow IA=d\left(I,d\right)\Leftrightarrow\sqrt{\left(x_0+1\right)^2+x^2_0}=\dfrac{\left|-x_0+x_0+1-1\right|}{\sqrt{2}}\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=-1\end{matrix}\right.\)

Khi đó: \(\left\{{}\begin{matrix}x_0=0\Rightarrow r=1\\x_0=-1\Rightarrow r=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+\left(y-1\right)^2=1\\\left(x+1\right)^2+y^2=1\end{matrix}\right.\)

 

Bình luận (0)
QL
Xem chi tiết
HM
1 tháng 10 2023 lúc 20:20

a) Phương trình đường tròn tâm A bán kính AB là \({\left( {x + 1} \right)^2} + {y^2} = 17\)

b) Ta có \(\overrightarrow {{u_{AB}}}  = \overrightarrow {AB}  = \left( {4;1} \right) \Rightarrow \overrightarrow {{n_{AB}}}  = \left( {1; - 4} \right)\).

Phương trình AB là \(1\left( {x + 1} \right) - 4y = 0 \Leftrightarrow x - 4y + 1 = 0\).

c) Bán kính của đường tròn tâm O, tiếp xúc với đường thẳng AB là

\(R = d\left( {O,AB} \right) = \frac{{\left| {0 - 4.0 + 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 4} \right)}^2}} }} = \frac{1}{{\sqrt {17} }}\)

Phương trình đường tròn tâm O tiếp xúc AB là \({x^2} + {y^2} = \frac{1}{{17}}\)

Bình luận (0)