Mn giúp mk câu này vs Trong mặt phẳng Oxy cho các điểm M(0;2) ; N(5;-3) ; P(-2;-2) ; Q(2;-4) lần lượt thuộc các cạnh AB BC CD DA của hình vuông ABCD . Diện tích hình vuông ABCD Đáp án S=10,S=2 mà k hổng bt cách tính mong các b giải giúp sớm Thanks
trong mặt phẳng tọa độ Oxy cho các điểm A(0:5) B(-3:0) C(1:1) M(0:5). a) cmr 3 điểm A,M,B thẳng hàng và A,B,C không thẳng hàng. b) tính diện tích ABC.
ai júp mk vs mk sẽ like cko.
(1) trong mặt phẳng Oxy, cho điểm I(3;-1) và đường thẳng △: 3x-4y+2=0. viết phương trình đường tròn tâm I và tiếp xúc với đường thẳng △
giúp mk vs ạ mk cần gấp
\(R=d\left(I;\Delta\right)=\dfrac{\left|3.3-4.\left(-1\right)+2\right|}{\sqrt{3^3+\left(-4\right)}^2}=3\)
Phương trình đường tròn có tâm \(I\left(3;-1\right)\) và \(R=3\)
\(\Rightarrow\left(x-3\right)^2+\left(y+1\right)^2=9\)
Trong mặt phẳng tọa độ Oxy cho các điểm M(0; 4), N(–3; 2) và P(9; –3).
Tọa độ điểm I của đoạn thẳng MN là:
A. I(0; 3)
B. I(–2; 2)
C. I(-3/2;3)
D. I(–3; 3)
Tọa độ điểm I của đoạn thẳng MN là:
x I = x M + x N 2 = 0 + ( − 3 ) 2 = − 3 2 y I = y M + y N 2 = 4 + 2 2 = 3 ⇒ I − 3 2 ; 3
Đáp án C
Đáp án C đúng
\(\left\{{}\begin{matrix}x_{M'}=2x_M=2.3=6\\y_{M'}=2y_M=2.\left(-2\right)=-4\end{matrix}\right.\)
\(\Rightarrow M'\left(6;-4\right)\)
(Mọi người giúp em bài này vs ạ. Em sắp thi rồi!!!)
Trong mặt phẳng với hệ trục toạ độ Oxy cho hình vuông ABCD tâm I. Gọi M,N,J lần lượt là trung điểm các đoạn thẳng AI,CD BN . Biết phương trình đường thẳng MJ là: 2y−7=0 và N(5;6). Biết đỉnh C có hoành độ lớn hơn 3 . Đỉnh C của hình vuông ABCD có tọa độ là?
Đặt AB=a
=>\(MB=MN=a\sqrt{10};BN=2a\sqrt{5}\)
=>ΔBMN vuông cân tại M và J là trung điểm của BN
=>MJ vuông góc NJ
=>NJ: x-5=0
Tọa độ J là:
x-5=0 và 2y-7=0
=>x=5 và y=7/2
Vì J là trung điểm của BN nên B(5;1)
Gọi C(x,y), x>3
BC=2NC=2 căn 5
Ta có HPT:
(x-5)^2+(y-1)^2=20 và (x-5)^2+(y-6)^2=5
=>x=7 và y=5(nhận) hoặc x=3 và y=5(loại)
=>C(7;5)
Giúp em bài này với ạ:
Câu 16: Trong mặt phẳng toạ độ Oxy, cho hai điểm A(1;-2) ; B(3;2). Tìm điểm M sao cho B là trung điểm của đoạn thẳng AM
A. M(5;6)
B. M(2;0)
C. M(4;0)
D. M(-1;-6)
Theo công thức trung điểm:
\(\left\{{}\begin{matrix}x_M=2x_B-x_A=5\\y_M=2y_B-y_A=6\end{matrix}\right.\) \(\Rightarrow M\left(5;6\right)\)
Để B là trung điểm của đoạn thẳng AM, ta cần tìm tọa độ của điểm M.
Theo định nghĩa, trung điểm của một đoạn thẳng là điểm nằm ở giữa hai đầu mút của đoạn đó. Ta áp dụng công thức trung điểm để tìm tọa độ của M.
Công thức trung điểm: M(xM, yM) là trung điểm của đoạn AB <=> (xM, yM) = ((xA + xB)/2, (yA + yB)/2).
Ứng với A(1; -2) và B(3; 2): xM = (1 + 3)/2 = 2, yM = (-2 + 2)/2 = 0.
Vậy tọa độ của điểm M là M(2; 0).
Đáp án đúng là: B. M(2; 0).
m.n giúp mk bài này đc ko?
Trong mặt phẳng Oxy cho A(1;3) , B(4;2) , M(x;y). Tìm tọa độ của M để tam giác MAB vuông cân tại M.
\(\left\{{}\begin{matrix}\overrightarrow{AM}=\left(x-1;y-3\right)\\\overrightarrow{BM}=\left(x-4;y-2\right)\end{matrix}\right.\)
Tam giác ABM vuông cân tại M khi:
\(\left\{{}\begin{matrix}\overrightarrow{AM}.\overrightarrow{BM}=0\\AM^2=BM^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-4\right)+\left(y-3\right)\left(y-2\right)=0\\\left(x-1\right)^2+\left(y-3\right)^2=\left(x-4\right)^2+\left(y-2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+y^2-5y+10=0\\3x-y=5\end{matrix}\right.\)
Thế \(y=3x-5\) lên pt trên:
\(x^2-5x+\left(3x-5\right)^2-5\left(3x-5\right)+10=0\)
\(\Leftrightarrow x^2-5x+6=0\Rightarrow\left[{}\begin{matrix}x=2\Rightarrow y=1\\x=3\Rightarrow y=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}M\left(2;1\right)\\M\left(3;4\right)\end{matrix}\right.\)
Trong mặt phẳng Oxy, cho điểm M(1;-8) và đường thẳng d: x-3y+5=0. Gọi M' là điểm đối xứng với M qua d.Tọa độ điểm M' là
giúp mình vs ạ :(
Gọi d' là đường thẳng qua M và vuông góc d \(\Rightarrow d'\) nhận (3;1) là 1 vtpt
Phương trình d':
\(3\left(x-1\right)+1\left(y+8\right)=0\Leftrightarrow3x+y+5=0\)
Gọi A là giao điểm d và d' \(\Rightarrow\) tọa độ A là nghiệm:
\(\left\{{}\begin{matrix}3x+y+5=0\\x-3y+5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(-2;1\right)\)
M' đối xứng M qua d khi và chỉ khi A và trung điểm MM'
\(\Rightarrow\left\{{}\begin{matrix}x_{M'}=2x_A-x_M=-5\\y_{M'}=2y_A-y_M=10\end{matrix}\right.\) \(\Rightarrow M\left(-5;10\right)\)
Trong mặt phẳng Oxy, cho các điểm A(1;3) và B( 4;0). Tọa độ điểm M thỏa 3 A M → + A B → = 0 → là
A.M( 4; 0)
B.M( 0; 4)
C.M( 5;3)
D.M( 2; 8)