(d):y=mx-3 `(m \ne 0)`. Gọi `A` là giao điểm của (d) với Oy. Tìm tọa độ điểm A <Đáp án: A(0;-3)>. tìm tất cả `m` để (d) cắt trục Ox tại điểm B sao cho OA=2OB
1. Giải hệ phương trình $\left\{\begin{aligned} &2x + \dfrac3{y-1} = 5\\ &4x - \dfrac1{y-1} = 3\\ \end{aligned} \right.$.
2. Trong mặt phẳng tọa độ $Oxy,$ xét đường thẳng $(d):$ $y = mx+4$ với $m \ne 0$.
a. Gọi $A$ là giao điểm của đường thẳng $(d)$ và trục $Oy$. Tìm tọa độ của điểm $A$.
b. Tìm tất cả các giá trị của $m$ để đường thẳng $(d)$ cắt trục $Ox$ tại điểm $B$ sao cho tam giác $OAB$ là tam giác cân.
Trong mặt phẳng tọa độ Oxy, xét đường thẳng (d): y = mx + 4 với m≠0.
1. Gọi A là giao điểm của đường thẳng (d) và trục Oy. TÌm tọa độ điểm A.
2. Tìm tất cả các giá trị của m để đường thẳng (d) cắt trục Ox tại điểm B sao cho tam giác OAB là tam giác cân.
Cho đừơng thẳng d: y = mx + 2 với m khác 0. Gọi A, B là giao điểm của d với trục
Ox, Oy . Tìm m để :
a) Diện tích tam giác OAB bằng 3.
b) Khoảng cách từ gốc tọa độ O đến đg thẳng d bằng 1.
Trong mptđ Oxy, xét đường thẳng (d): y=mx-3 và parabol (P): y=\(x^2\). Gọi A là giao điểm của đường thẳng (d) và trục Oy. Tính tọa độ điểm A.
Vì A là giao điểm của (d) với trục Oy nên x=0
=>y=-3
`A` là giao điểm của `(d)` và `Oy=>x=0`
`=>y=-3`
Vậy tọa độ điểm `A` là: `(0;-3)`
cho (d):
1) với m = -3 : a) vẽ đồ thị h/số trên b) tìm tọa độ giao điểm của (d) với (d2) : y = 2x - 1 c) gọi A,B lần lượt là giao của (d) với Ox,Oy . tính Soab d) tính k/c từ 0 đến (d)
2) tìm m biết đồ thị h//số (d) đi qua điểm M (1,2)
3) tìm m biết đồ thị h/số (d) cắt trục trung tại điểm có trung độ bằng 1
4) cho (d2) : y = x + 5 ; (d3) : y = -x - 2 tìm m để 3 đường thẳng (d),(d2),(d3) đồng quy
cho mình hỏi câu này
cho (d):
1) với m = -3 : a) vẽ đồ thị h/số trên b) tìm tọa độ giao điểm của (d) với (d2) : y = 2x - 1 c) gọi A,B lần lượt là giao của (d) với Ox,Oy . tính Soab d) tính k/c từ 0 đến (d)
2) tìm m biết đồ thị h//số (d) đi qua điểm M (1,2)
3) tìm m biết đồ thị h/số (d) cắt trục trung tại điểm có trung độ bằng 1
4) cho (d2) : y = x + 5 ; (d3) : y = -x - 2 tìm m để 3 đường thẳng (d),(d2),(d3) đồng quy
Trong mặt phẳng tọa độ Oxy, xét đường thẳng (d): \(\text{y = mx + 4}\) với \(\text{m ≠ 0}\).
a. Gọi A là giao điểm của đường thẳng (d) và trục Oy. Tìm tọa độ của điểm A.
b. Tìm tất cả các giá trị của m để đường thẳng (d) cắt trục Ox tại điểm B sao cho tam giác OAB là tam giác cân.
vì A là giao điểm của d và Oy nên A(0;y)
vì A \(\in\) d nên tọa độ A thỏa mãn :
y = m . 0 + 4 = 4
tọa độ của A là : A(0;4)
vì B cắt trục Ox tại B nên B(x;0)
vì B \(\in\) d nên tọa độ B thỏa mãn
0 = m.x + 4
x = \(\dfrac{-4}{m}\)
Để tam giác OAB cân tại O thì |\(\dfrac{-4}{m}\)| = 4
|m| = 1
m = 1 và m= -1
kết luận : A(0;4) và m = 1 và m = -1
Trong mặt phẳng tọa độ Oxy cho các đường thẳng (d) : y=mx−2m−1, m là số thực
1. Chứng minh với mọi số thực m thì các đường thẳng (d) luôn đi qua một điểm cố định
2. Gọi A và B lần lượt là giao điểm của (d) với trục Ox và trục Oy. Tìm m để diện tích tam giác OAB bằng 2
1, Ta có : y = mx - 2m - 1
<=> m ( x - 2 ) - 1 - y = 0
<=> m(x - 2) - (y+1) = 0
Dấu ''='' xảy ra khi x = 2 ; y = -1
Vậy (d) luôn đi qua A(2;-1)
2, (d) : y = mx - 2m - 1
Cho x = 0 => y = -2m - 1
=> d cắt Oy tại A(0;-2m-1)
=> OA = \(\left|-2m-1\right|\)
Cho y = 0 => x = \(\dfrac{2m+1}{m}\)
=> d cắt trục Ox tại B(2m+1/m;0)
=> OB = \(\left|\dfrac{2m+1}{m}\right|\)
Ta có : \(S_{OAB}=\dfrac{1}{2}\left|\dfrac{2m+1}{m}.\left(-2m-1\right)\right|=2\)
\(\Leftrightarrow\left|-\dfrac{\left(2m+1\right)^2}{m}\right|=4\Leftrightarrow\left[{}\begin{matrix}-\dfrac{\left(2m+1\right)^2}{m}=4\\-\dfrac{\left(2m+1\right)^2}{m}=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4m^2+8m+1=0\\4m^2+1=0\left(voli\right)\end{matrix}\right.\)
<=> m = \(\dfrac{-2\pm\sqrt{3}}{2}\)
Trong mặt phẳng tọa độ Oxy cho các đường thẳng (d) : \(y=mx-2m-1\) , m là số thực
1. Chứng minh với mọi số thực m thì các đường thẳng (d) luôn đi qua một điểm cố định
2. Gọi A và B lần lượt là giao điểm của (d) với trục Ox và trục Oy. Tìm m để diện tích tam giác OAB bằng 2
2: Tọa độ điểm A là:
\(\left\{{}\begin{matrix}y_A=0\\mx=2m+1\end{matrix}\right.\Leftrightarrow A\left(\dfrac{2m+1}{m};0\right)\)
Tọa độ điểm B là:
\(\left\{{}\begin{matrix}x=0\\y=-2m-1\end{matrix}\right.\Leftrightarrow B\left(-2m-1;0\right)\)
Theo đề, ta có: \(\left|\dfrac{4m^2+4m+1}{m}\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}4m^2+4m+1=4m\\4m^2+4m+1=-4m\end{matrix}\right.\Leftrightarrow4m^2+8m+1=0\)
\(\Leftrightarrow4m^2+8m+4m-3=0\)
\(\Leftrightarrow\left(2m+2\right)^2=3\)
hay \(m\in\left\{\dfrac{\sqrt{3}-2}{2};\dfrac{-\sqrt{3}-2}{2}\right\}\)