a, x/2 =y/3; y/5=z/4 và x-y +z = -49
Giup mk vs. Mk đg gấp. ^^
Tính A+B, A-B, B-A
a, A=x\(^2\)y+0,xy\(^3\)-7,5x\(^3\)y\(^2\)+x\(^3\)
B=3xy\(^3\)-x\(^2\)y+5,5x\(^3\)y\(^2\)
b, A=x\(^5\)+xy+0,3y\(^2\)-2
B=x\(^2\)y\(^3\)+5+1,3y\(^2\)
c, A=x\(^2\)y+xy\(^2\)-5x\(^2\)y\(^2\)+x\(^3\)
B=3xy\(^2\)-x\(^2\)y+x\(^2\)y\(^2\)
Trả lời:
7, 5( x + y )2 + 15( x + y )
= 5( x + y )( x + y + 3 )
9, 7x( y - 4 )2 - ( 4 - y )3
= 7x ( 4 - y )2 - ( 4 - y )
= ( 4 - y )2 ( 7x - 4 + y )
11, ( x + 1 )( y - 2 ) - ( 2 - y )2
= ( x + 1 )( y - 2 ) - ( y - 2 )2
= ( y - 2 )( x + 1 - y + 2 )
= ( y - 2 )( x - y + 3 )
8, 9x ( x - y ) - 10 ( y - x )2
= 9x ( x - y ) - 10 ( x - y )2
= ( x - y )[ ( 9x - 10 ( x - y ) ]
= ( x - y )( 9x - 10x + 10y )
= ( x - y )( 10y - x )
10, ( a - b )2 - ( a + b )( b - a )
= ( b - a )2 - ( a + b )( b - a )
= ( b - a )( b - a - a - b )
= - 2a( b - a )
= 2a ( a - b )
12, 2x ( x - 3 ) + y ( x - 3 ) + ( 3 - x )
= 2x ( x - 3 ) + y ( x - 3 ) - ( x - 3 )
= ( x - 3 )( 2x + y - 1 )
a) ( x+3 ) * ( x^2 - 3x +9 ) - ( 54+ x^3 )
b) ( 2x + y ) * ( 4x^2 - 2xy + y^2 ) - ( 2x - y ) * ( 4x^2 + 2xy + y^2 )
c) ( a+b ) ^3 - ( a-b ) ^3 - 2b^3
d) ( x+y+z ) ^ 2 - 2 * ( x+y+z ) * ( x+y ) + y^2 + ( x + y ) ^ 2
a) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3+27-54-x^3\)
\(=-27\)
b) \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(8x^3+y^3\right)-\left(8x^3-y^3\right)\)
\(=8x^3+y^3-8x^3+y^3\)
\(=2y^3\)
c) \(\left(a+b\right)^3-\left(a-b\right)^3-2b^3\)
\(=\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)-\left(a-b\right)^2\right]-2b^3\)
\(=\left(a+b-a+b\right)\left[\left(a^2+2ab+b^2\right)+\left(a^2-ab+ab-b^2\right)-\left(a^2-2ab+b^2\right)\right]-2b^3\)
\(=b^2\left(a^2+2ab+b^2+a^2-ab+ab-b^2-a^2+2ab-b^2\right)-2b^3\)
....
a) cho x+y=a ; x.y =b . Tính
A=x^2+y^2 ; B=x^3+y^3 ; C=x^5+y^5
b) cho x+y=1 . Tính M= 2.(x^3+y^3 ) - 3. ( x^2+y^2 )
a)
A=\(x^2+y^2=\left(x^2+2xy+y^2\right)-2xy=\left(x+y\right)^2-2xy=a^2-2b\)
\(B=x^3+y^3=\left(x^3+3x^2y+3xy^2+y^3\right)-3x^2y-3xy^2=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)
\(C=x^5+y^5=\left(x^5+y^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)
\(=\left(x+y\right)^5-5xy\left(x^3+2xy^2+2x^2y+y^3\right)=\left(x+y\right)^5-5xy\left(x^3+3xy^2+3x^2y+y^3-xy^2-x^2y\right)\)
\(=\left(x+y\right)^5-5xy\left(\left(x+y\right)^3-xy\left(x+y\right)\right)=a^5-5b\left(a^3-ab\right)\)
C/m rằng a)x^3+y^3-xy(x+y)=(x+y)(x-y)^2
b)x^3-y^3+xy(x-y)=(x-y)(x+y)^2
c)(a+b)(a^2-ab+b^2)+(a-b)(a^2+ab+b^2)=2a^3
d)(a+b)(a^2-ab+b^2)-(a-b)(a^2+ab+b^2)=2b^3
Giúp mk nha chiều nay mk nộp bài rồi . Cảm ơn các bạn rất nhiều
1.Với x-y =1 giá trị của biểu thức x^3 - y^3 -3xy = ?
2. x+y=3 va x^2 + y^2 =5 => x^3 +y^3 = ?
3. x-y =5 và x^2 + y^2 =15 => x^3 - y^3 = ?
4. x+y=2 va x^2 +y^2 =10 => x^3+ y^3 =?
5. x +y=3 => Q=x^2 + 2xy + y^2 -4x-4y +1 =?
6.Cho hình thang ABCD có góc A = góc D=90 độ. M trung điểm của BC . So sánh góc MAB và MDC
1. Chứng minh các đẳng thức :
a) (x + y)^2 - y^2 = x(x + 2y)
b) (x^2 + y^2) - (2xy)^2 = (x + y)^2 . (x - y)^2
c) (x + y)^3 = x(x - 3y)^2 + y(y - 3x)^2
2.Chứng minh rằng :
a) (a + b)^3 + (a - b)^3 = 2a(a^2 + 3b^2)
b) (a + b)^3 - (a - b)^3 = 2b(b^2 + 3a^2)
GIÚP MK VS Ạ!!!!!!! MK VIẾT HƠI KHÓ ĐỌC TÍ
Bài 1:
a) \(\left(x+y\right)^2-y^2=x^2+2xy+y^2-y^2=x^2+2xy=x\left(x+2y\right)\)
b) Sửa đề: \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x-y\right)^2\left(x+y\right)^2\)
c) \(x\left(x-3y\right)^2+y\left(y-3x\right)^2=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)
\(=x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)
\(=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3\)
Bài 2:
a) \(\left(a+b\right)^3+\left(a-b\right)^3=\left(a+b+a-b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2a\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)\)
\(=2a\left(a^2+3b^2\right)\)
b) \(\left(a+b\right)^3-\left(a-b\right)^3=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2b\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)
\(=2b\left(b^2+3a^2\right)\)
a, \(\left(x+y\right)^2-y^2=x\left(x+2y\right)\Leftrightarrow x^2+2xy+y^2-y^2=x^2+2xy\)
\(\Leftrightarrow x^2+2xy=x^2+2xy\left(đpcm\right)\)
b, \(\left(x^2+y^2\right)-\left(2xy\right)^2=\left(x+y\right)^2\left(x-y\right)^2\)
\(\Leftrightarrow x^2+y^2-4x^2y^2=\left(x^2+2xy+y^2\right)\left(x^2-2xy+y^2\right)\)
\(\Leftrightarrow x^2+y^2-4x^2y^2=x^4-2x^2y^2+y^4\)đề sai ?
Cho x,y,a tm:
\(\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{y^4x^2}}=a\)
CMR: \(\sqrt[3]{a^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2}\)
Kiểm tra lại đề bài đi em, chỗ CMR đó
Đặt \(\sqrt[3]{x^2}=m\Leftrightarrow x^2=m^3;\sqrt[3]{y^2}=n\Leftrightarrow y^2=n^3\)
Thay vào biểu thức:
\(\Leftrightarrow\sqrt{m^3+m^2n}+\sqrt{n^3+mn^2}=a\\ \Leftrightarrow m^3+n^3+mn\left(m+n\right)+2\sqrt{\left(m^3+m^2n\right)\left(n^3+mn^2\right)}=a^2\\ \Leftrightarrow m^3+n^3+mn\left(m+n\right)+2\sqrt{m^2n^2\left(m+n\right)}=a^2\\ \Leftrightarrow m^3+n^3+3mn\left(m+n\right)=a^2\\ \Leftrightarrow\left(m+n\right)^3=a^2\\ \Leftrightarrow m+n=\sqrt[3]{a^2}\\ \Leftrightarrow\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2}\)
Em chắc chắn là đề bài đúng chứ? Trước khi nhìn kĩ lại?
A=x^2-3*x*y-y^2+2*x-3*y+1
B = -2*x+x*y+2*y-5*x+2*y-3
C= 7*y^2+3*x^2-4*x*y-6*x+4*y+5
tìm A+B+C,A-B+C,A-B-C xác định bậc của mỗi đa thức thu gọn dc
1)Phân tích thành nhân tử:
a. (((x^2)+(y^2))^2)((y^2)-(x^2))+(((y^2)+(z^2))^2)((z^2)-(y^2))+(((z^2)+(x^2))^2)((x^2)-(z^2))
b. ((x-a)^4)+4a^4
c. (x^4)-(8x^2)+4
d. (x^8)+(x^4)+1
e. x((y^2)-(z^2))+y((z^2)-(x^2))+z((x^2)-(y^2))
f. (8x^3)(y+z)-(y^3)(z+2x)-(z^3)(2x-y)
g. (12x-1)(6x-1)(4x-1)(3x-1)-5
2) Cho (a^3)+(b^3)+(c^3)=3abc và abc khác 0. Tính A=(1+a/b)(1+b/c)(1+c/a).
3) Rút gọn phân thức:
((x^3)+(y^3)+(z^3)-3xyz)/(((x-y)^2)+((y-z)^2)+((z-x)^2))