Những câu hỏi liên quan
H24
23 tháng 12 2020 lúc 14:20

`x,y,z in Z` và `6^x=1+2^y+3^z`

Bình luận (0)
BA
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
DN
Xem chi tiết
VM
22 tháng 10 2019 lúc 22:02

\(\frac{y+1}{4x^2+1}=1-\frac{4x^2-y}{4x^2+1}\ge1-\frac{4x^2-y}{2\sqrt{4x^2.1}}=1+\frac{y}{4x}-x;\)

Tương tự ta được \(\frac{1+z}{4y^2+1}\ge1+\frac{z}{4y}-y\)\(\frac{1+x}{4z^2+1}\ge1+\frac{x}{4z}-z\)

cộng 3 bất đăng thức trên ta được p \(\ge3+\frac{1}{4}\left(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\right)-\left(x+y+z\right)=\frac{3}{2}+\frac{1}{4}\left(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\right)\ge\)\(\frac{3}{2}+\frac{1}{4}.3\sqrt[3]{\frac{y}{x}.\frac{z}{y}.\frac{x}{z}}=\frac{9}{4}\)

p min khi x=y=z = 1/2

Bình luận (0)
 Khách vãng lai đã xóa
VD
Xem chi tiết
NT
Xem chi tiết
HK
Xem chi tiết
H24
15 tháng 4 2019 lúc 14:25

đỗ thị cẩm ly dạng này thì lớp 9 mới chính thức học,nhưng lớp 7 có thể đưa về những dạng quen thuộc để giải ạ.Vd: tìm x để biểu thức y nguyên

                                                  Lời giải

Theo đề bài,với x = 1 suy ra \(0y=3\) (vô lí)

Xét \(x\ne1\),chia hai vế của đẳng thức cho x - 1,được:

\(y=\frac{x^2+2}{x-1}=\frac{x^2-1^2}{x-1}+\frac{3}{x-1}\)

\(=\left(x+1\right)+\frac{3}{x-1}\)(dùng đẳng thức:\(a^2-b^2=\left(a-b\right)\left(a+b\right)\) ,tự chứng minh,sẽ ra được kết quả này)

Do x + 1 nguyên (với mọi x thuộc Z),nên để y thuộc Z(tức là y nguyên ấy)

Thì \(\frac{3}{x-1}\inℤ\Rightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Suy ra \(x\in\left\{-2;0;2;4\right\}\).Thay từng giá trị của x vào \(y=\frac{x^2+2}{x-1}\) sẽ tìm được y (lưu ý đk y nguyên)

Bình luận (0)
H24
15 tháng 4 2019 lúc 16:01

Đầu tiên,xét bài toán phụ: CMR: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
Thật vậy,ta có: \(a^2-b^2=\left(a^2+ab\right)-\left(ab+b^2\right)\)

\(=a\left(a+b\right)-b\left(a+b\right)=\left(a-b\right)\left(a+b\right)\)

Trở lại bài toán,ta có \(y\left(x-1\right)-x^2=2\) (chuyển vế)

Thêm 12 vào mỗi vế và áp dụng quy tắc dấu ngoặc:

\(y\left(x-1\right)-\left(x^2-1^2\right)=3\)

\(\Leftrightarrow y\left(x-1\right)-\left(x-1\right)\left(x+1\right)=3\)

\(\Leftrightarrow\left(x-1\right)\left(y-x-1\right)=3\) 

Dễ dàng nhận xét rằng \(x-1;y-x-1\inƯ\left(3\right)\)

Xét bốn trường hợp:

TH1: \(\hept{\begin{cases}x-1=-3\\y-x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-2\end{cases}}\)

TH2: \(\hept{\begin{cases}x-1=-1\\y-x-1=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-2\end{cases}}\)

TH3: \(\hept{\begin{cases}x-1=1\\y-x-1=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\end{cases}}\)

TH4; \(\hept{\begin{cases}x-1=3\\y-x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=6\end{cases}}\)

Vậy \(\left(x;y\right)=\left\{\left(-2;-2\right),\left(0;-2\right),\left(2;6\right),\left(4;6\right)\right\}\)

Bình luận (0)
TP
15 tháng 4 2019 lúc 21:42

tth  a có cách giải pt nghiệm nguyên này. Cũng khá hay

\(x^2+2=y\left(x-1\right)\)

\(\Leftrightarrow y=\frac{x^2+2}{x-1}\)

Vì y nguyên nên \(\frac{x^2+2}{x-1}\)nguyên

Khi đó : \(\left(x^2+2\right)⋮\left(x-1\right)\)

\(\Leftrightarrow\left(x^2-x+x-1+3\right)⋮\left(x-1\right)\)

\(\Leftrightarrow\left[x\left(x-1\right)+\left(x-1\right)+3\right]⋮\left(x-1\right)\)

\(\Leftrightarrow\left[\left(x-1\right)\left(x+1\right)+3\right]⋮\left(x-1\right)\)

Vì \(\left(x-1\right)\left(x+1\right)⋮\left(x-1\right)\)

\(\Rightarrow3⋮\left(x-1\right)\)

\(\Rightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow x\in\left\{2;0;4;-2\right\}\)

Xét bảng :

x204-2
y6-26-2

Vậy (x;y)={(2;6),(0;-2),(4;6),(-2;-2)}

Bình luận (0)