Cho tam giác ABC, trên AB lấy điểm M; qua M kẻ đường thẳng song song với BC cắt AC ở N. Biết AM=11cm, MB=8cm, AC=24cm. Tính các đoạn thẳng NC và AN
a,Xét tam giác ABN và tam giác ACM có :
AM=AN (gt)
Góc A chung
AB=AC(gt)
=> tam giác ABN = tam giác ACM (c-g-c)
b,theo câu a =>AMC^=ANB^(1)
Ta có : AM=AN =>tam giác AMN cân tại A => AMN^=ANM^(2)
Từ 1 và 2 =>MNI^=NMI^(3)
Vì B1^=C1^
B^=C^
=>B^-B1^=C-C1^
=>C2^=B2^(4)
Mặt khác : I1^=I2^(đối đỉnh) (5)
Từ 3 ; 4 và 5 => MNI^+NMI^+I1^=180*=I2^+B2^+C2^(tổng 3 góc của 1 tam giác )
=> MNI^+NMI^ / 2 = B2^+C2^ / 2
=> B2^=MNI^
Vì 2 góc này ở vị trí sole trong và bằng nhau
=> MN // BC
cho hình tam giác abc. trên cạnh ab lấy điểm m sao cho am = 1/4 ab, trên cạch bc lấy điểm m sao cho BN =2/3 BC. Nối M với C, trên cạnh MC lấy điểm P sao cho MP = 2/3 MC. Biết diện tích tam giác NPC bằng 5cm2. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC trên tia đối của tia CA lấy điểm D sao cho CD = CA, trên tia đối của tia CB lấy điểm E sao cho CE=CB
a) Chứng minh: tam giác ABC= tam giác DEC
b) Chứng minh: AB //DE
c) Trên cạnh AB lấy điểm M , trên cạnh DE lấy điểm N sao cho AM=DN. Chứng minh:tam giác AMC= tam giác DNC
d) Chứng minh: Ba điểm M, C, N thẳng hàng
a: Xét ΔABC và ΔDEC có
CA=CD
\(\widehat{ACB}=\widehat{DCE}\)
CB=CE
Do đó:ΔACB=ΔDCE
b: Xét tứ giác ABDE có
C là trung điểm của AD
C là trung điểm của BE
Do đó: ABDE là hình bình hành
Suy ra: AB//DE
c: Xét ΔAMC và ΔDNC có
AM=DN
\(\widehat{MAC}=\widehat{NDC}\)
AC=DC
Do đó: ΔAMC=ΔDNC
d: Xét tứ giác AMDN có
AM//DN
AM=DN
Do đó: AMDN là hình bình hành
Suy ra: Hai đường chéo AD và MN cắt nhau tại trung điểm của mỗi đường
mà C là trung điểm của AD
nên C là trung điểm của MN
https://hoc24.vn/cau-hoi/1cho-tam-giac-abc-co-2-duong-trung-tuyen-bm-va-cn-cat-nhau-tai-g-chung-minh-bm-cn-dfrac32bc2cho-tam-giac-abc-d-la-trung-diem-ac-tren-bd-lay-e-sao-cho-be2ed-f-thuoc-tia-doi-cua-tia.5863553679489
trl câu này hộ mik với chiều nay cần dùng r
Cho tam giác ABC . Trên AB lấy điểm M sao cho AB = 3AM . Trên AC lấy điểm N sao cho CN = 2AN . Tính diện tích tam giác ABC biết diện tích tam giác AMN bằng 4,5 cm2
Cho tam giác abc, trên ab lấy diểm m sao cho bm = 1/3 ab, trên ac lấy điểm n sao cho nc = 1/3 ac. nối điểm n ới m, diện tích tam giác amn = 18cm2. Tính diện tích tam giác abc ?
cho tam giác ABC. Trên AB lấy điểm M sao cho AM = 1/3 AB. Trên BC lấy điểm N sao cho BN = NC. Tính diện tích tam giác AMN biết diện tích tam giác ABC bằng 102.6 cm2 ?
cho tam giác ABC biết AB = 8cm , AC=10cm , BC=12cm . Trên tia đối của tia AB lấy điểm M sao cho AM=10cm
a, chứng minh rằng tam giác ABC đồng dạng với tam giác CBM . Tính CM
b, CMR CA là tia phân giác của góc BCM
c, Kẻ đường cao BE và CF của tam giác BCM . Gọi I là giao điểm của BE và CF .
CMR BE.BI + CI.CF=AB.BM
MN GIÚP MIK VS Ạ
a: Xét ΔABC và ΔCBM có
BA/BC=BC/BM
góc B chung
=>ΔABC đồg dạng với ΔCBM
=>AC/CM=BC/BM=2/3
=>10/CM=2/3
=>CM=15cm
b: ΔABC đồng dạng với ΔCBM
=>góc ACB=góc CMB
mà góc CMB=góc ACM
nên góc ACB=góc ACM
=>CA là phân giác của góc MCB
cho tam giác ABC. Trên AB lấy điểm M sao cho AM = 2/3 AB. Trên AC lấy điểm N sao cho AN = 3/4 AC.Nối M với N biết S.tam giác AMN là 90cm2 . Tính diện tích tam giác ABC.
Bạn tự vẽ hình nha. Nhớ nối thêm đoạn MC
Kí hiệu S là diện tích
Ta có
SAMN = 3/4 SAMC ( vì chung chiều cao từ M đến AC đáy AN = 3/4 SAMC )
SAMC = 90 : 3 x 4 = 120 cm2
SAMC = 2/3 SABC ( vì chung chiều cao từ C đến AB Đáy AM = 2/3 AB )
SABC = 120 : 2 x 3 = 180 cm2
Đáp số 180 cm2
Cho tam giác ABC, M là trung điểm BC .Trên tia đối của tia MA lấy điểm D sao cho MD=MA. C/m
a) Tam giác AMB = tam giác DMC
b) CD//AB
c) Trên cạnh AB lấy điểm E, trên cạnh DC lấy điểm F sao cho AE=DF. C/m ba điểm E,M,F thẳng hàng
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: CD//AB
Cho tam giác ABC , M là trung điểm của BC . trên tia đối của tia MA lấy điểm E sao cho ME=MA . chứng minh
a) tam giác ABM = tam giác ECM
b) AB // CE
c) Trên AB lấy điểm I , trên tia CE lấy điểm K sao cho BI=CK. C/m : I,M,K thẳng hàng
Xét ABM và EMC có : AM = ME BM = CM Góc AMB = góc CME ( đối đỉnh ) => tam giac ABM = Tam giác EMC Ta có : Tam giác AMB = tam giác EMC nên góc BAM = góc EMC Mặt khác : 2 góc BAM và AEC nắm vị trí so le trong => AB // CE c Xét tam giác AIB và tam gics CIK có : AI = IC BI = Ik Góc AIB = góc CIK ( đối đỉnh ) => tam giác AIB = tam giác CIK