: Cho tam giác ABC vuông tại A. Đường phân giác BE; kẻ EH vuông góc với BC ( H thuộc BC ). Gọi K là giao điểm của AB và HE. Chứng minh:
a/ EA = EH
b/ EK = EC
c/ BE vuông góc KC
1.Cho tam giác ABC vuông tại A , đường phân giác BE , biết EC=3cm ,BC=6cm . Tính độ dài các đoạn thẳng AB, AC .
2.Cho tam giác ABC vuông tại A , đường cao AH . Biết AB:AC=3:7 , AH=42cm.Tính độ dài BH , CH
3.Cho tam giác ABC vuông tại A , đường cao AH . Biết BH:CH=9:16 , AH-48cm.Tính độ dài các cạnh góc vuông của tam giác ABC
4.Cho tam giác ABC vuông tại A ,phân giác AD , đường cao AH. Biết AB=21cm,AC=28cm .Tính HD
Cho tam giác ABC vuông tại A,Đường phân giác BE,kẻ EK vuông góc với BC tại K>Kẻ CD vuông góc BE tại D.Chứng minh rằng:Tam giác ABE=Tam giác KBE b.Ba đường thẳng AB,CD,EK đồng quy tại một điểm
a: Xét ΔBAE vuông tại A và ΔBKE vuông tại K có
BE chung
góc ABE=góc KBE
=>ΔBAE=ΔBKE
b: Gọi giao của CD và AB là M
Xét ΔBMC có
BD,CAlà đường cao
BD cắt CA tại E
=>E là trực tâm
=>ME vuông góc BC
=>M,E,K thẳng hàng
=>BA,KE,CD đồng quy
cho tam giác abc vuông tại a, đường cao ah. a) Chứng minh: ah.bc = ab.ac, b) be là tia phân giác góc abc, be cắt ah tại d. chứng minh. tam giác abd đồng dạng tam giác cbe
a: Xét ΔABC có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)
Ta có: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)
Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)
b: Xét ΔABD và ΔCBE có
\(\widehat{ABD}=\widehat{CBE}\)(BE là phân giác của góc ABC)
\(\widehat{BAD}=\widehat{BCE}\left(=90^0-\widehat{ABC}\right)\)
Do đó: ΔABD~ΔCBE
bài 4: cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E . Kẻ EH vuông góc BC tại H (H thuộc BC) Chứng minh a) tam giác ABE= tam giác HBE b) BE là đường trung trực của đoạn thẳng AH c) EC>AE
Cho tam giác ABC vuông tại A có đường cao AD và tia phân giác BE lấy F thuộc BC sao cho AF vuông góc với BE tại G chứng minh A) BE.BG= BD.BC
B) tam giác BGD đồng dạng với tam giác BEC
cho tam giác abc vuông tại a có đường phân giác của góc abc cắt ac tại e a,tam giác abe bằng tam giác hbe b,be là đường trung trực của đoạn thẳng ah c,ec nhỏ hơn ae
a) Vì ΔABC vuông tại A (gt)
⇒ ∠BAE=900
⇒ ΔBAE vuông tại A
Vì EH⊥BC (gt)
⇒ ΔBEH và ΔCHE vuông tại H
Xét tam giác vuông BAE và tam giác vuông BHE có:
Cạnh BE chung
∠BEA=∠BEH (BE là tia phân giác ∠ABC)
⇒ ΔBAE=ΔBHE (cạnh huyền - góc nhọn)
Vậy ΔBAE=ΔBHE
b) Vì ΔBAE=ΔBHE (cmt)
⇒ BA=BE (2cạnh tương ứng)
⇒ AE=HE (2cạnh tương ứng) (1)
⇒ B,E thuộc đường trung trực của AH
⇒ Đường thẳng BE thuộc đường trung trực của ẠH
Vậy đường thẳng BE thuộc đường trung trực của ẠH
c) Xét tam giác EHC vuông tại E có:
EC>EH (DC là cạnh huyền) (2)
Từ (1) và (2) ⇒ EC>AE
Vậy EC>AE
Cho tam giác ABC vuông tại A, phân giác BE của góc ABC (E thuộc AC). Kẻ đường thẳng qua e vuông góc với BC tại b và cắt tia BA tại E. Chứng minh
a) Tam giác EAB=Tam giác EDB
b) Tam giác AEF=Tam giác DEG
c) EC=EF
Bạn ơi đề bài cho ko rõ. Nên mik ko bt làm sao đc.????
Cho tam giác ABC vuông tại B có đường cao BE . Biết AB = 3cm, AC = 6cm.
a) Giải tam giác vuông ABE
b) Tính AE, BE, CE
c) Vẽ đường phân giác AM của tam giác ABC, tính AM, MB, MC
b: Xét ΔABC vuông tại B có
\(BA^2+BC^2=AC^2\)
hay \(BC=3\sqrt{3}\left(cm\right)\)
Xét ΔABC vuông tại B có BE là đường cao ứng với cạnh huyền AC
nên \(\left\{{}\begin{matrix}BA^2=AE\cdot AC\\BC^2=CE\cdot CA\\BE\cdot AC=BA\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AE=1.5\left(cm\right)\\CE=4.5\left(cm\right)\\BE=\dfrac{3\sqrt{3}}{2}\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A ( AB < AC ), đường cao AH ( H thuộc BC )
1, Chứng minh: Tam giác HBA đồng dạng tam giác ABC và BC2 = BH.BC
2, Kẻ phân giác BE Của góc ABC ( E thuộc AC ), BE cắt AH tại I
1) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
Suy ra: \(\dfrac{HB}{AB}=\dfrac{AB}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BH\cdot BC\)
Bài 6: Cho tam giác ABC vuông tại A, đường cao AH. Tia phân giác góc HAB cắt tia phân giác góc B tại E. Tia phân giác góc HAC cắt tia phân giác góc C tại F.
a)CMR: BE vuông góc AF
b) BE cắt CF tại K. CMR: AK vuông góc EF.
giúp tui vs