Cho tam giác ABC có góc A = 90 ; góc AH vuông góc BC. Các tia phân giác của góc C và góc BAH cắt ở I . Chứng minh góc AIC = 90
Cho tam giác ABC và tam giác A’B’C’ có góc A= góc A’=90 độ và BC/B’C’=AC/A’C’.C/m tam giác ABC~tam giác A’B’C’
1)Cho tam giác ABC có góc C kém góc B 90 độ.Kẻ tia phân giác AD.Tính ADB
2)Cho tam giác ABC có góc B > góc C là 90 dộ.Kẻ đường cao AH.CM: góc BAH = góc ACH
3)Cho tam giác ABC có các phân giác AD và BE.CM:
a)Nếu góc ADC = góc BEC thì góc A = góc B
b)Nếu góc ADB = góc BEC thì góc A + góc B=120 độ
cho tam giác ABC,góc A=90 độ
tính góc B+C=?
có nhận xét gì về tam giác ABC và góc B,góc C
Vẽ hình
Cho tam giác ABC có góc A - góc B = 90 độ, vẽ CH vuông góc AB. Chứng minh : tam giác HCA = tam giác ABC
Cho tam giác ABC có góc A=90 độ;AB=3cm;AC=4cm;BC=5cm.Tam giác DEF có góc D=90 độ;DF=3cm;DE=6cm.Vẽ phân giác BM của góc BAC.Chứng minh tam giác ABM đồng dạng với tam giác DEF
Xét ΔABC có BM là đường phân giác
nên AM/AB=CM/CB
=>AM/3=CM/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)
Do đó: AM=1,5(cm)
Xét ΔABM vuông tại A và ΔDEF vuông tại D có
AB/DE=AM/DF
Do đó: ΔABM\(\sim\)ΔDEF
cho tam giác góc vuông ABC(A=90)có đường cao ah . biết Ab=3cm và AC=4cm.a chứng minh tam giác HBAcho tam giác góc vuông ABC(A=90)có đường cao ah . biết Ab=3cm và AC=4cm.a chứng minh tam giác HBA~ AbC, B tính độ dài BC và AH AbC, B tính độ dài BC và AH
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a. Xét ΔHBA và ΔABC có:
\(\widehat{H}=\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g)
b. Vì ΔABC vuông tại A
Theo đ/lí Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 32 + 42
\(\Rightarrow\) BC2 = 25 cm
\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm
Ta lại có: ΔHBA \(\sim\) ΔABC
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)
\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow\) AH = 2,4 cm
cho tam giác ABC có góc A-góc B+góc C=90 độ và góc A-góc C=-5 độ.So sánh các cạnh trong tam giác
Đặt \(\widehat{A}=a;\widehat{B}=b;\widehat{C}=c\)
Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=>a+b+c=180(1)
\(\widehat{A}-\widehat{B}+\widehat{C}=90^0\)
=>a-b+c=90(2)
\(\widehat{A}-\widehat{C}=-5^0\)
=>\(\widehat{C}-\widehat{A}=5^0\)
=>c-a=5(3)
Từ (1),(2),(3) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b+c=180\\a-b+c=90\\c-a=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a+c+b=180\\a+c-b=90\\c-a=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+c=\dfrac{180+90}{2}=\dfrac{270}{2}=135\\b=\dfrac{180-90}{2}=\dfrac{90}{2}=45\\c-a=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=45\\c+a=135\\c-a=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=45\\c=\dfrac{135+5}{2}=\dfrac{140}{2}=70\\a=c-5=70-5=65\end{matrix}\right.\)
Vậy: \(\widehat{A}=65^0;\widehat{B}=45^0;\widehat{B}=70^0\)
Xét ΔABC có \(\widehat{B}< \widehat{A}< \widehat{C}\)
mà AC,BC,AB lần lượt là cạnh đối diện của các góc ABC;BAC;ACB
nên AC<BC<AB
Cho tam giác ABC có góc A=90 độ; AB=3cm; AC=4cm và tam giác MNP có N=90 độ; MN=8cm; MP=10cm
a) Tính BC và NP
b) Chứng minh tam giác ABC đồng dạng với tam giác NPM
a, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=5cm\)
Theo định lí Pytago tam giác MNP vuông tại N
\(NP=\sqrt{MP^2-MN^2}=6cm\)
b, Xét tam giác ABC và tam giác NPM có
^BAC = ^PNM = 900
\(\dfrac{AB}{NP}=\dfrac{AC}{NM}=\dfrac{3}{6}=\dfrac{4}{8}=\dfrac{1}{2}\)
Vậy tam giác ABC ~ tam giác NPM ( c.g.c )
Cho tam giác ABC có góc A=90 độ; AB=3cm; AC=4cm và tam giác MNP có N=90 độ; MN=8cm; MP=10cm
a) Tính BC và NP
b) Chứng minh tam giác ABC đồng dạng với tam giác NPM
a: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
\(NP=\sqrt{10^2-8^2}=6\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔNPM vuông tại N có
AB/NP=AC/NM
Do đó: ΔABC\(\sim\)ΔNPM
Cho tam giác ABC có góc A=90 độ; AB=3cm; AC=4cm và tam giác MNP có N=90 độ; MN=8cm; MP=10cm
a) Tính BC và NP
b) Chứng minh tam giác ABC đồng dạng với tam giác NPM