Những câu hỏi liên quan
PT
Xem chi tiết
NL
5 tháng 10 2019 lúc 11:53

Sử dụng định lý Bezout:

a/ \(g\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

\(f\left(x\right)⋮g\left(x\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(2\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)

b/ \(g\left(x\right)=0\Rightarrow x=-1\)

\(\Rightarrow f\left(-1\right)=0\Rightarrow-a+b=2\Rightarrow b=a+2\)

Tất cả các đa thức có dạng \(f\left(x\right)=2x^3+ax+a+2\) đều chia hết \(g\left(x\right)=x+1\) với mọi a

c/ \(g\left(x\right)=0\Rightarrow x=-2\Rightarrow f\left(-2\right)=0\Rightarrow4a+b=-30\)

\(2x^4+ax^2+x+b=\left(x^2-1\right).Q\left(x\right)+x\)

Thay \(x=1\Rightarrow a+b=-2\)

\(\Rightarrow\left\{{}\begin{matrix}4a+b=-30\\a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{28}{3}\\b=\frac{22}{3}\end{matrix}\right.\)

d/ Tương tự: \(\left\{{}\begin{matrix}f\left(2\right)=8a+4b-40=0\\f\left(-5\right)=-125a+25b-75=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\\b=\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
LC
4 tháng 10 2019 lúc 17:58

a) Ta có: \(g\left(x\right)=x^2-3x+2\)

                          \(=x^2-x-2x+2\)

                            \(=x\left(x-1\right)-2\left(x-1\right)\)

                           \(=\left(x-1\right)\left(x-2\right)\)

Vì \(f\left(x\right)⋮g\left(x\right)\)

\(\Rightarrow f\left(x\right)=\left(x-1\right)\left(x-2\right)q\left(x\right)\)

\(\Rightarrow\hept{\begin{cases}f\left(1\right)=\left(1-1\right)\left(1-2\right)q\left(1\right)=0\left(1\right)\\f\left(2\right)=\left(1-2\right)\left(2-2\right)q\left(2\right)=0\left(2\right)\end{cases}}\)

Từ \(\left(1\right)\Leftrightarrow1^4-3.1^3+1^2+a+b=0\)

\(\Leftrightarrow-1+a+b=0\)

\(\Leftrightarrow a+b=1\left(3\right)\)

Từ \(\left(2\right)\Leftrightarrow2^4-3.2^3+2^2+2a+b=0\)

\(\Leftrightarrow-4+2a+b=0\)

\(\Leftrightarrow2a+b=4\left(4\right)\)

Từ \(\left(3\right);\left(4\right)\Rightarrow\hept{\begin{cases}a+b=1\\2a+b=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=3\\b=-2\end{cases}}}\)

Vậy a=3 và b=-2 để \(f\left(x\right)⋮g\left(x\right)\)

Các phần sau tương tự

Bình luận (0)
BB
Xem chi tiết
SI
26 tháng 2 2021 lúc 20:48

f(x)=(x−1)(x2−2x−2) và đây là cách phân tích duy nhất mà các hệ số của nhân tử đều nguyên.

Do đó f(x) cho hết x2+ax+b khi x2−2x−2 chia hết x2+ax+b

Bình luận (1)
TM
26 tháng 2 2021 lúc 20:49

Ta có:

\(f\left(x\right)=\left(x-1\right)\left(x^2-x-2\right)\) và đây là cách phân tích duy nhất mà các hệ số của nhân tử đều nguyên 

Do đó f(x) cho hết \(x^2+ax+b\)  khi \(x^2-2x-2\)  chia hết \(x^2+ax+b\)

=>a=b= -2

 

Bình luận (0)
BB
Xem chi tiết
NL
25 tháng 2 2021 lúc 22:05

\(f\left(x\right)=\left(x-1\right)\left(x^2-2x-2\right)\) và đây là cách phân tích duy nhất mà các hệ số của nhân tử đều nguyên 

Do đó f(x) cho hết \(x^2+ax+b\) khi \(x^2-2x-2\) chia hết \(x^2+ax+b\)

\(\Rightarrow a=b=-2\)

Bình luận (0)
BB
Xem chi tiết
AH
27 tháng 2 2021 lúc 23:10

Lời giải:

\(x^3-3x^2+2=x(x^2+ax+b)-(a+3)(x^2+ax+b)+(a^2+3a-b)x+b(a+3)+2\)

Để $f(x)$ chia hết cho $x^2+ax+b$ thì:

\(\left\{\begin{matrix} a^2+3a-b=0\\ b(a+3)+2=0\end{matrix}\right.\)

Với $a,b$ nguyên ta dễ dàng tìm được $a=b=-2$

Bình luận (0)
ND
Xem chi tiết
NQ
Xem chi tiết
NT
15 tháng 4 2021 lúc 18:18

Vì nghiệm của f(x) là 1 nên 

Thay 1 vào đa thức f(x) ta được 

\(f\left(1\right)=a+b+5=1\Leftrightarrow a+b=-4\)(1) 

Vì nghiệm của f(x) là -2 nên 

Thay -2 vào đa thức f(x) ta được 

\(f\left(-2\right)=4a-2b+5=-2\Leftrightarrow4a-2b=-7\)(2) 

Từ (1) và (2) ta có hệ sau : \(\left\{{}\begin{matrix}a+b=-4\\4a-2b=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-4-b\left(1\right)\\4a-2b=-7\left(2\right)\end{matrix}\right.\)

Thay (1) vào (2) ta được : \(4\left(-4-b\right)-2b=-7\Leftrightarrow-16-4b-2b=-7\Leftrightarrow-6b=9\Leftrightarrow b=-\dfrac{3}{2}\)

\(\Rightarrow a=-4+\dfrac{3}{2}=\dfrac{-5}{2}\)

Vậy a = -5/2 ; b = -3/2 

Bình luận (0)
TA
Xem chi tiết
H24
Xem chi tiết
HD
Xem chi tiết
NH
14 tháng 8 2017 lúc 20:16

1. Thay x = -2 vào \(f\left(x\right)\), ta có:

\(\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=\)0

=> -8 + 8 - 2a + 1 = 0

=> -2a +1 = 0

=> -2a = -1

=> a = \(\frac{1}{2}\)

Vậy a = \(\frac{1}{2}\)

2. * Thay x = 1 vào \(f\left(x\right)\), ta có:

1+ 1.a + b = 1 + a + b = 0    ( 1)

* Thay x = 2 vào biểu thức \(f\left(x\right)\), ta có:

22 + 2.a + b =  4 + 2a + b =  0  ( 2)

* Lấy    (2 )   -   ( 1)  , ta có:

 ( 4 + 2a + b ) - ( 1 + a + b ) = 3  + a 

=> 3 + a = 0

=> a = -3

* 1 + a + b = 0 

=> 1 - 3 + b = 0

=> b = -1 + 3 = -2

Vậy a= -3  và b= -2

Bình luận (0)
NH
8 tháng 4 2019 lúc 20:17

a = -3

b = -2

Hok tốt

Bình luận (0)