Violympic toán 8

BB

Cho đa thức f(x)=x^3-3x^2+2. Với giá trị nguyên nào của a và b thì đa thức f(x) chia hết cho đa thức x^2+ax+b

SI
26 tháng 2 2021 lúc 20:48

f(x)=(x−1)(x2−2x−2) và đây là cách phân tích duy nhất mà các hệ số của nhân tử đều nguyên.

Do đó f(x) cho hết x2+ax+b khi x2−2x−2 chia hết x2+ax+b

Bình luận (1)
TM
26 tháng 2 2021 lúc 20:49

Ta có:

\(f\left(x\right)=\left(x-1\right)\left(x^2-x-2\right)\) và đây là cách phân tích duy nhất mà các hệ số của nhân tử đều nguyên 

Do đó f(x) cho hết \(x^2+ax+b\)  khi \(x^2-2x-2\)  chia hết \(x^2+ax+b\)

=>a=b= -2

 

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
AD
Xem chi tiết
NP
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
OW
Xem chi tiết
HA
Xem chi tiết
MK
Xem chi tiết