Những câu hỏi liên quan
MA
Xem chi tiết
NL
10 tháng 3 2023 lúc 15:52

Đề sai rồi, em kiểm tra lại, EK, HF và BD ko hề đồng quy

Bình luận (0)
MA
10 tháng 3 2023 lúc 21:32

Cho hình bình hành ABCD, lấy điểm M trên BD sao cho MB < MD. Đường thẳng qua M và song song với AB cắt AD và BC lần lượt tại E và F. Đường thẳng qua M song song với AD cắt AB và AC lần lượt tại K và H.

1. Chứng minh: các đường thẳng EK, HF, BD đồng quy

2. Cho SMKF = 9 cm2 ; SMEH = 25 cm2 . Tính SABCD.

 
Bình luận (2)
NL
10 tháng 3 2023 lúc 22:30

Đặt tên các điểm như hình vẽ.

Các tứ giác AEMK, BKMF, CFMH, DHME đều là hình bình hành (hai căpj cạnh đối song song theo giả thiết)

\(\Rightarrow MK=BF\) ; \(EF=CD\)\(MH=BC\)

Áp dụng định lý Talet cho tam giác BCD: \(\dfrac{BF}{BC}=\dfrac{MF}{CD}\) \(\Rightarrow\dfrac{MK}{MH}=\dfrac{MF}{EF}\)

\(\Rightarrow KF||EH\) (Talet đảo)

\(\Rightarrow KFHE\) là hình thang

Gọi G là giao điểm EK và HF, theo bổ đề hình thang do M là giao điểm 2 đường chéo hình thang \(\Rightarrow MG\) đi qua trung điểm I và J của 2 đáy KF và EH hay G, M, I, J thẳng hàng

Mặt khác BKMF và DEMH là hbh \(\Rightarrow B;I;M\) và \(D;J;M\) thẳng hàng \(\Rightarrow B;D;I;J;M\) thẳng hàng (do \(I;J;M\) thẳng hàng)

 \(\Rightarrow B;D;G\) thẳng hàng

Hay EK, HF, BD đồng quy tại G

b.

Từ E và H hạ vuông góc xuống KF tại L và N

\(\Rightarrow ELNH\) là hình chữ nhật (2 cặp cạnh đối song song và 1 góc vuông) \(\Rightarrow EL=HN\)

\(S_{EFK}=\dfrac{1}{2}EL.KF\) ; \(S_{HFK}=\dfrac{1}{2}HN.KF\)

\(\Rightarrow S_{EFK}=S_{HFK}\Rightarrow S_{EMK}+S_{MFK}=S_{HFM}+S_{MFK}\)

\(\Rightarrow S_{EMK}=S_{HMF}\Rightarrow\dfrac{1}{2}S_{AEMK}=\dfrac{1}{2}S_{SFMH}\Rightarrow S_{AEMK}=S_{SFMH}\)

Hai tam giác MKF và MEH đồng dạng (g.g) \(\Rightarrow\dfrac{S_{MFK}}{S_{MHE}}=\left(\dfrac{MF}{ME}\right)^2=\dfrac{9}{25}\)

\(\Rightarrow\dfrac{MF}{ME}=\dfrac{3}{5}\)

Từ K kẻ KO vuông góc EF

\(\Rightarrow\dfrac{S_{EMK}}{S_{MFK}}=\dfrac{\dfrac{1}{2}KO.ME}{\dfrac{1}{2}KO.MF}=\dfrac{ME}{MF}=\dfrac{5}{3}\)

\(\Rightarrow S_{EMK}=\dfrac{5}{3}.9=15\left(cm^2\right)\)

\(\Rightarrow S_{ABCD}=2.9+2.25+4.15=128\left(cm^2\right)\)

Bình luận (0)
H24
Xem chi tiết
VA
2 tháng 12 2020 lúc 21:18

hỏi từ từ thôi hỏi như này bao giờ trả lời xong

Bình luận (0)
 Khách vãng lai đã xóa
H24
17 tháng 6 2021 lúc 14:45

Sao bạn hỏi nhiều vậy bạn

Bình luận (0)
 Khách vãng lai đã xóa
NC
7 tháng 10 2021 lúc 16:22
Nhìn đã thấy nản
Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
NT
27 tháng 11 2023 lúc 9:16

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔOAK và ΔOCH có

\(\widehat{OAK}=\widehat{OCH}\)(hai góc so le trong, AK//CH)

OA=OC

\(\widehat{AOK}=\widehat{COH}\)(hai góc đối đỉnh)

Do đó: ΔOAK=ΔOCH

=>OK=OH

=>O là trung điểm của KH

Xét ΔOAE và ΔOCF có

\(\widehat{EAO}=\widehat{FCO}\)(hai góc so le trong, AE//CF)

OA=OC

\(\widehat{AOE}=\widehat{COF}\)

Do đó: ΔOAE=ΔOCF

=>OE=OF

=>O là trung điểm của EF

Xét tứ giác EKFH có

O là trung điểm chung của EF và KH

=>EKFH là hình bình hành

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 1 2017 lúc 9:42

Ta có DAOK = DCOH Þ OK =OH, DDOE = DBOF Þ OE = OF Þ EHFK là hình bình hành

Bình luận (1)
NK
Xem chi tiết
NT
13 tháng 9 2023 lúc 18:04

loading...  loading...  loading...  

Bình luận (1)
NN
Xem chi tiết
NK
29 tháng 8 2021 lúc 14:23

ABCD là hbh=> AD//BC=> góc DAC= góc ACB và AO=OC

Xét tam giác AOE và tam giác COF ta có

góc AOE = góc COF (2 góc đối xừng)

AO=OC

góc DAC= góc ACB

=> tam giác AOE = tam giác COF=> OE=OF

CHứng minh tương tự ta có tam giác AOK= tam giác COH=> OK=OH

Xét tứ giác EHFK có EH và FK là 2 đường chéo cắt nhau tại O

lại có OE=OF
          OH=OK

=> EHFk là hình bình hành (do 2 đường chéo cắt nhau tại trung điểm mỗi đường)

Bình luận (0)
 Khách vãng lai đã xóa
HD
Xem chi tiết
ND
13 tháng 6 2018 lúc 9:54

A B C D E F O I H K d

Qua B và D kẻ 2 đường thẳng song song với d cắt đường chéo AC của hbh ABCD tại H và K.

Gọi I là tâm đối xứng của hbh ABCD.

Áp dụng ĐL Thales ta có các tỉ số: \(\frac{AB}{AE}=\frac{AH}{AO};\frac{AD}{AF}=\frac{AK}{AO}\)

\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{AH+AK}{AO}=\frac{2AK+IH+IK}{AO}\)(*)

Dễ thấy \(\Delta\)BHI=\(\Delta\)DKI (g.c.g) => IH=IK, thay vào (*)

\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{2AK+2IK}{AO}=\frac{2\left(AK+IK\right)}{AO}=\frac{2AI}{AO}\)

Mà AI=1/2AC => \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)(đpcm).

Bình luận (0)
TP
28 tháng 6 2018 lúc 7:36

Cảm ơn nhiều nhak ^_^

Bình luận (0)
NL
Xem chi tiết
TN
Xem chi tiết
NH
17 tháng 10 2021 lúc 7:59

bài đó cũng khó nhỉ hehehehe

Bình luận (0)
 Khách vãng lai đã xóa