Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
BT
Xem chi tiết
TN
26 tháng 11 2021 lúc 13:44

em thấy cj Trà My lm đúng á

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NL
14 tháng 1 2022 lúc 18:30

\(P\ge\dfrac{\left(a+b\right)^2}{2ab}+\dfrac{\sqrt{ab}}{a+b}=\dfrac{\left(a+b\right)^2}{16ab}+\dfrac{\sqrt{ab}}{2\left(a+b\right)}+\dfrac{\sqrt{ab}}{2\left(a+b\right)}+\dfrac{7}{16}.\dfrac{\left(a+b\right)^2}{ab}\)

\(P\ge3\sqrt[3]{\dfrac{\left(a+b\right)^2ab}{64\left(a+b\right)^2.ab}}+\dfrac{7}{16}.\dfrac{4ab}{ab}=\dfrac{5}{2}\)

\(P_{min}=\dfrac{5}{2}\) khi \(a=b\)

 

Bình luận (0)
NA
Xem chi tiết
DP
22 tháng 1 2019 lúc 19:15

\(2a-ab+b=0\)

\(\Rightarrow a\left(2-b\right)+\left(2-b\right)=2-0\)

\(\Rightarrow\left(a-1\right)\left(2-b\right)=2\)

\(\Rightarrow\left(a-1\right);\left(2-b\right)\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Ta có các trường hợp sau:

\(TH1:\hept{\begin{cases}a-1=1\\2-b=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\b=0\end{cases}}}\)

\(TH2:\hept{\begin{cases}a-1=-1\\2-b=-2\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=4\end{cases}}}\)

\(TH3:\hept{\begin{cases}a-1=2\\2-b=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=3\\b=1\end{cases}}}\)

\(TH4:\hept{\begin{cases}a-1=-2\\2-b=-1\end{cases}\Leftrightarrow\hept{\begin{cases}a=-1\\b=3\end{cases}}}\)

Vậy............................

Bình luận (0)
PA
Xem chi tiết
NL
Xem chi tiết
PQ
25 tháng 4 2018 lúc 10:17

Cách ngắn hơn ( nên làm cách này ) : 

Ta có : 

\(a>0\)

\(b>0\)

\(\Rightarrow\)\(ab>0\) \(\left(1\right)\)

Lại có : 

\(a^2\ge0\)

\(b^2\ge0\)

\(\Rightarrow\)\(a^2+b^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}a^2=0\\b^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}}\)

Mà \(a>0\)\(;\)\(b>0\) nên dấu "=" không thể xảy ra 

\(\Rightarrow\)\(a^2+b^2>0\) \(\left(2\right)\)

Cộng theo vế (1) và (2) ta được : 

\(a^2+ab+b^2>0\) ( đpcm ) 

Vậy nếu \(a>0\)\(;\)\(b>0\) thì \(a^2+ab+b^2>0\)

Chúc bạn học tốt ~ 

Bình luận (0)
MF
24 tháng 4 2018 lúc 11:09

đề yêu cầu chứng minh cái gì vậy bạn?

Bình luận (0)
NL
25 tháng 4 2018 lúc 9:09

xin lỗi nha

La chứng minh  a2+ab+b2>0

Bình luận (0)
DH
Xem chi tiết
NL
12 tháng 8 2021 lúc 22:16

\(y^2=a^2\left(1+b^2\right)+b^2\left(1+a^2\right)+2ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)

\(=a^2+b^2+2a^2b^2+2ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)

\(x^2=a^2b^2+\left(1+a^2\right)\left(1+b^2\right)+2ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)

\(=a^2+b^2+2a^2b^2+2ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}+1\)

\(\Rightarrow y^2+1=x^2\)

\(\Rightarrow y^2=x^2-1\)

\(\Rightarrow y=\sqrt{x^2-1}\)

Bình luận (0)
NN
Xem chi tiết
AL
18 tháng 4 2021 lúc 8:50

Ta có:\(\dfrac{x^2}{4}=\dfrac{x}{2};\dfrac{y^2}{9}=\dfrac{y}{3};\dfrac{z^2}{25}=\dfrac{z}{5}\)

Aps dụng tính chất dãy tỉ số bằn nhau:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)

=>\(\dfrac{x}{2}=1=>x=2\)

  \(\dfrac{y}{3}=1=>y=3\)

\(\dfrac{z}{5}=1=>z=5\)

Vậy x=2, y=3, z=5

Bình luận (1)
NT
18 tháng 4 2021 lúc 8:50

Ta có : \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được : 

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)

\(\Leftrightarrow x=2;y=3;z=5\)

Bình luận (1)
TH
Xem chi tiết