Biết a-b=2
ab=4048143 (a>0; b>0)
Tính M=a3+b3
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
so sánh: 2a và 2b-1,biết a<b.
a^2 +1 và 0-a^2-3 và 0.
a^2 va ab,b^2 va ab biết 0<a<b.
a^2 và b^2,a^3 và b^3 biết 0<a<b
1) Tìm hai số tự nhiên a, b > 0, biết ab = 216 và (a, b) = 6.
2) Tìm hai số tự nhiên a, b > 0, biết [a, b] = 240 và (a, b) = 16.
3) Tìm hai số tự nhiên a, b > 0, biết ab = 180, [a, b] = 60.
em thấy cj Trà My lm đúng á
Tìm GTNN của BT sau. Biết a,b>0
\(P=\dfrac{a^2+b^2}{ab}+\dfrac{\sqrt{ab}}{a+b}\)
\(P\ge\dfrac{\left(a+b\right)^2}{2ab}+\dfrac{\sqrt{ab}}{a+b}=\dfrac{\left(a+b\right)^2}{16ab}+\dfrac{\sqrt{ab}}{2\left(a+b\right)}+\dfrac{\sqrt{ab}}{2\left(a+b\right)}+\dfrac{7}{16}.\dfrac{\left(a+b\right)^2}{ab}\)
\(P\ge3\sqrt[3]{\dfrac{\left(a+b\right)^2ab}{64\left(a+b\right)^2.ab}}+\dfrac{7}{16}.\dfrac{4ab}{ab}=\dfrac{5}{2}\)
\(P_{min}=\dfrac{5}{2}\) khi \(a=b\)
tìm x biết 2a-ab+b=0
a2 +ab-2=0
\(2a-ab+b=0\)
\(\Rightarrow a\left(2-b\right)+\left(2-b\right)=2-0\)
\(\Rightarrow\left(a-1\right)\left(2-b\right)=2\)
\(\Rightarrow\left(a-1\right);\left(2-b\right)\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta có các trường hợp sau:
\(TH1:\hept{\begin{cases}a-1=1\\2-b=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\b=0\end{cases}}}\)
\(TH2:\hept{\begin{cases}a-1=-1\\2-b=-2\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=4\end{cases}}}\)
\(TH3:\hept{\begin{cases}a-1=2\\2-b=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=3\\b=1\end{cases}}}\)
\(TH4:\hept{\begin{cases}a-1=-2\\2-b=-1\end{cases}\Leftrightarrow\hept{\begin{cases}a=-1\\b=3\end{cases}}}\)
Vậy............................
Cho tam giác ABC cân tại A, góc A = 36°. Biết AB = AC = b, BC = a. Chứng minh rằng: a^2 + ab - b^2 = 0
Chứng minh rằng: a2+ab+b2>0
Biết a>0, b>0
Cách ngắn hơn ( nên làm cách này ) :
Ta có :
\(a>0\)
\(b>0\)
\(\Rightarrow\)\(ab>0\) \(\left(1\right)\)
Lại có :
\(a^2\ge0\)
\(b^2\ge0\)
\(\Rightarrow\)\(a^2+b^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}a^2=0\\b^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}}\)
Mà \(a>0\)\(;\)\(b>0\) nên dấu "=" không thể xảy ra
\(\Rightarrow\)\(a^2+b^2>0\) \(\left(2\right)\)
Cộng theo vế (1) và (2) ta được :
\(a^2+ab+b^2>0\) ( đpcm )
Vậy nếu \(a>0\)\(;\)\(b>0\) thì \(a^2+ab+b^2>0\)
Chúc bạn học tốt ~
đề yêu cầu chứng minh cái gì vậy bạn?
xin lỗi nha
La chứng minh a2+ab+b2>0
Cho \(x=ab+\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\); \(y=a\sqrt{1+b^2}+b\sqrt{1+a^2}\). Tính y theo x, biết ab>0
\(y^2=a^2\left(1+b^2\right)+b^2\left(1+a^2\right)+2ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)
\(=a^2+b^2+2a^2b^2+2ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)
\(x^2=a^2b^2+\left(1+a^2\right)\left(1+b^2\right)+2ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)
\(=a^2+b^2+2a^2b^2+2ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}+1\)
\(\Rightarrow y^2+1=x^2\)
\(\Rightarrow y^2=x^2-1\)
\(\Rightarrow y=\sqrt{x^2-1}\)
1.tìm số xyz biết \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25},vàx-y+z=4\)
2. biết \(a^2+ab+\dfrac{b^2}{3}=25;c^2+\dfrac{b^2}{3}=9;a^2+ac+c^2=16\) và a≠ 0; c ≠ 0; a ≠ -0. c/m rằng \(\dfrac{2c}{a}=\dfrac{b+c}{a+c}\)
Ta có:\(\dfrac{x^2}{4}=\dfrac{x}{2};\dfrac{y^2}{9}=\dfrac{y}{3};\dfrac{z^2}{25}=\dfrac{z}{5}\)
Aps dụng tính chất dãy tỉ số bằn nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
=>\(\dfrac{x}{2}=1=>x=2\)
\(\dfrac{y}{3}=1=>y=3\)
\(\dfrac{z}{5}=1=>z=5\)
Vậy x=2, y=3, z=5
Ta có : \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
\(\Leftrightarrow x=2;y=3;z=5\)
cho biết a^3 + b^3 + 3(a^2 +b^2) + 4( a+b) +4 = 0 và ab >0, tìm GTLN của Q = 1/a + 1/b