Những câu hỏi liên quan
LN
Xem chi tiết
TN
7 tháng 10 2016 lúc 18:19

Ta có:

\(\frac{ab+c}{c+1}=\frac{ab+c}{\left(a+c\right)+\left(b+c\right)}\)\(\le\frac{ab+c}{4\left(a+c\right)}+\frac{ab+c}{4\left(b+c\right)}\left(1\right)\)

Tương tự ta có:

\(\frac{bc+a}{a+1}\le\frac{bc+a}{4\left(a+b\right)}+\frac{bc+a}{4\left(a+c\right)}\left(2\right)\)

\(\frac{ac+b}{b+1}\le\frac{ac+b}{4\left(a+b\right)}+\frac{ac+b}{4\left(b+c\right)}\left(3\right)\)

Cộng theo vế của (1),(2) và (3) ta có:

\(Q\le\frac{a+b+c+3}{4}=1\)

Dấu = khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)
H24
Xem chi tiết
NM
22 tháng 12 2021 lúc 14:45

Ta có \(\sqrt{bc\left(1+a^2\right)}=\sqrt{bc+a^2bc}=\sqrt{bc+a\left(a+b+c\right)}\)

\(=\sqrt{\left(a+b\right)\left(a+c\right)}\)

Đặt BT đề cho là P

\(\Leftrightarrow P=\sum\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}=\sum\sqrt{\dfrac{a}{a+b}\cdot\dfrac{a}{a+c}}\\ \Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{b+a}+\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\cdot3=\dfrac{3}{2}\)

Dấu \("="\Leftrightarrow a=b=c=\sqrt{3}\)

Bình luận (0)
HB
Xem chi tiết
PQ
29 tháng 11 2019 lúc 19:30

Dễ CM đc: \(\Sigma_{cyc}\frac{1}{ab+a+1}=1\) với abc=1 

\(B=\Sigma_{cyc}\frac{1}{ab+a+2}\le\frac{1}{16}\left(9\Sigma_{cyc}\frac{1}{ab+a+1}+3\right)=\frac{1}{16}\left(9.1+3\right)=\frac{3}{4}\)

"=" \(\Leftrightarrow\)\(a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
TC
Xem chi tiết
TN
Xem chi tiết
H24
13 tháng 2 2019 lúc 19:58

Áp dụng BĐT Cô-si:

\(A\le\dfrac{a+b}{2\sqrt{c+ab}}+\dfrac{b+c}{2\sqrt{a+bc}}+\dfrac{c+a}{2\sqrt{b+ac}}\)\(\le\dfrac{a+b}{2\sqrt{2\sqrt{abc}}}+\dfrac{b+c}{2\sqrt{2\sqrt{abc}}}+\dfrac{c+a}{2\sqrt{2\sqrt{abc}}}\)\(=\dfrac{a+b+c}{\sqrt[4]{4abc}}=\dfrac{1}{\sqrt[4]{4abc}}\ge\dfrac{1}{\sqrt{\left(a+b+c\right).\dfrac{2}{3}}}\)(BĐT Cô-si)\(=\dfrac{1}{\sqrt{\dfrac{2}{3}}}=\dfrac{\sqrt{6}}{2}\)

Vậy Amin=\(\dfrac{\sqrt{6}}{2}\Leftrightarrow a=b=c=\dfrac{1}{3}\)

Bình luận (0)
BB
Xem chi tiết
AH
28 tháng 10 2021 lúc 16:38

Lời giải:

Áp dụng BĐT AM-GM:
\(P=\sum \sqrt{\frac{ab}{c+ab}}=\sum \sqrt{\frac{ab}{c(a+b+c)+ab}}=\sum \sqrt{\frac{ab}{(c+a)(c+b)}}\)

\(\leq \sum \frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)=\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)

Vậy $P_{\max}=\frac{3}{2}$ khi $a=b=c=\frac{1}{3}$

Bình luận (0)
TM
Xem chi tiết
TN
18 tháng 4 2017 lúc 23:07

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{ab}{c+1}=\frac{ab}{\left(c+a\right)+\left(b+c\right)}\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

Tương tự cho 2 BĐT còn lại ta có: 

\(\frac{bc}{a+1}\le\frac{1}{4}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right);\frac{ac}{b+1}\le\frac{1}{4}\left(\frac{ac}{a+b}+\frac{ac}{b+c}\right)\)

Cộng theo vế 3 BĐT trên ta có: 

\(P\le\frac{1}{4}\left[\left(\frac{ab}{b+c}+\frac{ac}{b+c}\right)+\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\left(\frac{bc}{a+b}+\frac{ac}{a+b}\right)\right]\)

\(=\frac{1}{4}\left[\frac{a\left(b+c\right)}{b+c}+\frac{b\left(a+c\right)}{a+c}+\frac{c\left(a+b\right)}{a+b}\right]\)

\(=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\cdot1=\frac{1}{4}\left(a+b+c=1\right)\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)
TM
18 tháng 4 2017 lúc 20:53

giúp đỡ nặng quá

Bình luận (0)

trả lời 

=1/3 nha 

chúc bn 

học tốt

Bình luận (0)
HL
Xem chi tiết
NL
26 tháng 1 2022 lúc 8:01

\(P=\dfrac{a^2+b^2+c^2}{ab+bc+ca}\ge\dfrac{ab+bc+ca}{ab+bc+ca}=1\)

\(P_{min}=1\) khi \(a=b=c=1\)

\(P=\dfrac{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}{ab+bc+ca}=\dfrac{9}{ab+bc+ca}-2\)

Do \(a;b\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1=2-c\)

\(\Rightarrow ab+c\left(a+b\right)\ge2-c+c\left(3-c\right)=-c^2+2c+2=c\left(2-c\right)+2\ge2\)

\(\Rightarrow P\le\dfrac{9}{2}-2=\dfrac{5}{2}\)

\(P_{max}=\dfrac{5}{2}\) khi \(\left(a;b;c\right)=\left(1;2;0\right);\left(2;1;0\right)\)

Bình luận (0)
CK
Xem chi tiết
NL
29 tháng 3 2023 lúc 16:33

\(Q=\dfrac{2a}{\sqrt{a^2+ab+bc+ca}}+\dfrac{b}{\sqrt{b^2+ab+bc+ca}}+\dfrac{c}{\sqrt{c^2+ab+bc+ca}}\)

\(=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\dfrac{2a}{a+b}.\dfrac{2a}{a+c}}+\sqrt{\dfrac{2b}{a+b}.\dfrac{b}{2\left(b+c\right)}}+\sqrt{\dfrac{2c}{a+c}.\dfrac{c}{2\left(b+c\right)}}\)

\(\le\dfrac{1}{2}\left(\dfrac{2a}{a+b}+\dfrac{2a}{a+c}+\dfrac{2b}{a+b}+\dfrac{b}{2\left(b+c\right)}+\dfrac{2c}{a+c}+\dfrac{c}{2\left(b+c\right)}\right)\)

\(=\dfrac{9}{4}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{7}{\sqrt{15}};\dfrac{1}{\sqrt{15}};\dfrac{1}{\sqrt{15}}\right)\)

Bình luận (0)