Những câu hỏi liên quan
PB
Xem chi tiết
CT
23 tháng 5 2019 lúc 18:06

Bình luận (0)
TM
Xem chi tiết
PB
Xem chi tiết
CT
26 tháng 2 2017 lúc 13:06

Đặt v= un – 1.

Lấy số dương d > 0 bé tùy ý

⇒ luôn tồn tại Giải bài 2 trang 121 sgk Đại Số 11 | Để học tốt Toán 11 thỏa mãn Giải bài 2 trang 121 sgk Đại Số 11 | Để học tốt Toán 11

⇒ Giải bài 2 trang 121 sgk Đại Số 11 | Để học tốt Toán 11 với mọi n ≥ n0.

⇒ Theo định nghĩa ta có:

Giải bài 2 trang 121 sgk Đại Số 11 | Để học tốt Toán 11

Bình luận (0)
H24
Xem chi tiết
NL
25 tháng 3 2021 lúc 15:40

\(\lim\left(u_n-2\right)=0\) ;\(\forall n\Rightarrow\lim\left(u_n\right)=2\)

\(\Rightarrow\lim\left(u_n^2+2u_n-1\right)=2^2+2.2-1=7\)

Bình luận (0)
BB
Xem chi tiết
PB
Xem chi tiết
CT
2 tháng 3 2017 lúc 10:41

l i m   v n   =   0   ⇒   | v n | có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi (1)

Vì | u n |   ≤   v n   v à   v n   ≤   | v n | với mọi n, nên | u n |   ≤   | v n | với mọi n. (2)

Từ (1) và (2) suy ra | u n | cũng có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi, nghĩa là l i m   u n = 0

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 11 2019 lúc 8:17

- Ta có:

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 2)

Chọn C

Bình luận (0)
MT
Xem chi tiết
PB
Xem chi tiết
CT
21 tháng 8 2019 lúc 11:30

* Xét tử số: Ta thấy 1, 2, 3, 4, ...,  n là một dãy số thuộc cấp số cộng có n số hạng với

u 1   =   1 ; d= 1 .

Tổng n số hạng của cấp số cộng: S n = u 1 + u n n 2 = 1 + n n 2 .

* Xét mẫu số: Ta thấy 1 , 3 , 3 2 , 3 3 , ... , 3 n  là một dãy số thuộc cấp số nhân có n + 1 số hạng với u 1   =   1  ; q = 3

Tổng (n+ 1) số hạng của cấp số nhân:  S n + 1 = u 1 . 1 − q n + 1 1 − q = 1 − 3 n + 1 1 − 3 = 3 n + 1 − 1 2 .

⇒ u n = n 3 n + 1 − 1 = n 3.3 n − 1

Bằng quy nạp ta luôn có n < 2 n ,   ∀ n ∈ ℕ *  và 3 n > 1 ,   ∀ n ∈ ℕ *

⇒ u n = n 3.3 n − 1 < n 3 n < 2 n 3 n = 2 3 n

Vì lim 2 3 n = 0  nên  lim u n = 0.

Chọn đáp án A

Bình luận (0)