cho điểm M nằm ngoài (O), vẽ tiếp tuyến MC và cát tuyến MAB với (O) (C là tiếp điểm; A nằm giữa M và B; O nằm trong góc BMC).
a) chứng minh MC^2=MA*MB
b)gọi H là hình chiếu vuông góc của C lên MO. Chứng minh tứ giác AHOB nội tiếp
Tham khảo cái này nhé e
nguồn Cho đường tròn (O). Từ điểm M nằm ngoài (O) vẽ tiếp tuyến MD, MC với (O) (C, D là các tiếp điểm). Vẽ cát tuyến MAB không đi qua tâm O, A nằm giữa M và B. Tia phân giác góc ACB cắt AB ở E. a) Chứng minh MC = ME. b) Chứng minh DE là tia phân giác góc ADB - Toán học Lớp 9 - Bài tập Toán học Lớp 9 - Giải bài tập Toán học Lớp 9 | Lazi.vn - Cộng đồng Tri thức & Giáo dục
Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME < MF). Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phiá đối với đường thẳng MO).
a) Chứng minh rằng : MA.MB = ME. MF
b) Gọi H là hình chiếu vuông góc của điểm C lên đường thẳng MO. Chứng minh tứ giác AHOB nội tiếp.
c) Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường tròn đường kính MF; nửa đường tròn này cắt tiếp tuyến tại E của (O) ở K. Gọi S là giao điểm của hai đường thẳng CO và KF. Chứng minh rằng đường thẳng MS vuông góc với đường thẳng KC.
d) Gọi P và Q lần lượt là tâm đường tròn ngoại tiếp các tam giác EFS và ABS và T là trung điểm của KS. Chứng minh ba điểm P, Q, T thẳng hàng.
Câu 3. Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳngMO cắt (O) tại E và F (ME < MF). Vẽ cát tuyến MAB và tiếp tuyến MC của đường tròn (O)
(C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳngMO).
a)Chứng minh rằng MA.MB = ME.MF
b)Gọi H là hình chiếu vuông góc của điểm C lên đường thẳng MO. Chứng minh tứ giác
AHOB nội tiếp.
d)Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường tròn đường kính MF; nửa
đường tròn này cắt tiếp tuyến tại E của (O) ở K. Gọi S là giao điểm của hai đường thẳng CO
và KF. Chứng minh rằng đường thẳng SM vuông góc với đường thẳng KC.
e)Gọi P và Q lần lượt là tâm đường tròn ngoại tiếp các tam giác EFS và ABS; X là trung
điểm của KS. Chứng minh ba điểm P, Q, X thẳng hàng.
a) Xét (O) có
\(\widehat{EFA}\) là góc nội tiếp chắn cung EA
\(\widehat{EBA}\) là góc nội tiếp chắn cung EA
Do đó: \(\widehat{EFA}=\widehat{EBA}\)(Hệ quả góc nội tiếp)
hay \(\widehat{MBE}=\widehat{MFA}\)
Xét ΔMBE và ΔMFA có
\(\widehat{MBE}=\widehat{MFA}\)(cmt)
\(\widehat{AMF}\) chung
Do đó: ΔMBE∼ΔMFA(g-g)
Suy ra: \(\dfrac{MB}{MF}=\dfrac{ME}{MA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(MA\cdot MB=ME\cdot MF\)(Đpcm)
Từ điểm M ở ngoài ( O;R ) vẽ tiếp tuyến MC và cát tuyến MAB sao cho điểm O không nằm ngoài goc BMC. MO cắt (O) tại E,F (ME<MF)Giả sử (O;R) không đổi, điểm M cố định, cát tuyến MAB quay quanh M. Hãy tìm GTLN của tống MA+MB
Từ điểm M ở ngoài ( O;R ) vẽ tiếp tuyến MC và cát tuyến MAB sao cho điểm O không nằm ngoài goc BMC. MO cắt (O) tại E,F (ME<MF)
Giả sử (O;R) không đổi, điểm M cố định, cát tuyến MAB quay quanh M. Hãy tìm GTLN của tống MA+MB
khó quá mk ko bít sorry!!!
547568769
Xin lỗi bạn!
Mk mới học lớp 8 thôi ak!
Chúc bạn có câu trả lời sớm nha!
Kb nhá ^_^
Khó z ak!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!?
Sorry mk ko pít cách giải =_=
Kb vs mk nhé! ^.^
Cho đường trònO R ; , điểm M nằm ngoài đường tròn. Vẽ các tiếp tuyến MC MD , (C D , là các
tiếp điểm) và cát tuyến MAB đi qua tâm O của đường tròn (A ở giữa M vàB ).
a) Chứng minh MC MAMB 2 . .
b) Gọi K là giao điểm của BD và tia CA. Chứng minh bốn điểm B C M K , , , nằm trên
một đường tròn.
c) Tính độ dài BK theo R khi CMD 60 .
cho đường tròn tâm o , từ điểm M nằm ngoài đường tròn tâm o vẽ các tiếp tuyến MC,MD với đường tròn tâm o .ve cát tuyến MAB không đi qua tâm ), A nằm giữa M và B . gọi I là trung điểm của AB .CMR:MI là phân giác của góc CID
Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Từ M kẻ tiếp tuyến MT (T là tiếp điểm) và cát tuyến MAB với đường tròn (O). Trên tia đối của tia MA lấy điểm C sao cho \(MC=MA\). Gọi N là trung điểm của BC. Hãy so sánh MT với BN.
từ điểm M nằm ngoài đường tròn(O) ,vẽ 2 tiếp tuyến MC,MDcủa (O) (C,D là 2 tiếp điểm),kẻ một cát tuyến MAB vứi (O) sao cho điểm A nằm giữa 2 điểm M,B và tâm O nằm trong góc BMC. gọi I là trung điểm của dây AB
a. c/m 5 điểm O,I,D,M,C cùng thuộc một đtr
b. gọi H là giao điểm của OM và CD. c/m MH.MO=MA.MB
c.tia OI cắt tiếp tuyến A của đtr (O) tại N.c/m 3 điểm N,C,D thẳng hàng