TN

cho điểm M nằm ngoài (O), vẽ tiếp tuyến MC và cát tuyến MAB với (O) (C là tiếp điểm; A nằm giữa M và B; O nằm trong góc BMC).

a) chứng minh MC^2=MA*MB

b)gọi H là hình chiếu vuông góc của C lên MO. Chứng minh tứ giác AHOB nội tiếp

H24
14 tháng 4 2021 lúc 20:02

Xét $(O)$ có: $\widehat{MCA}=\widehat{CBA}$ (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung $CA$)

hay $\widehat{MCA}=\widehat{MBC}$

Xét $ΔMCA$ và $ΔMBC$ có:

$\widehat{MCA}=\widehat{MBC}$
$\widehat{M}$ chung 

$⇒ΔMCA \backsim ΔMBC(g.g)$

\(\Rightarrow\dfrac{MC}{MB}=\dfrac{MA}{MC}\Rightarrow MC^2=MA.MB\)

b, Xét $(O)$ có: $MC$ là tiếp tuyến của đường tròn
\(\Rightarrow MC\perp OC\)

hay $ΔMCO$ vuông tại $C$

có: đường cao $MH$ 

nên $MC^2=MH.MO$ (hệ thức lượng trong tam giác vuông)

Mà $MC^2=MA.MB$ nên $MA.MB=MH.MO$

suy ra \(\Rightarrow\dfrac{MA}{MO}=\dfrac{MH}{MB}\)

$\widehat{M}$ chung

Nên $ΔMAH \backsim ΔMOB(c.g.c)$

nên $\widehat{MHA}=\widehat{MBO}$
hay $\widehat{MHA}=\widehat{ABO}$

suy ra tứ giác $AHOB$ nội tiếp (góc ngoài tại 1 đỉnh = góc trong đỉnh đối diện)undefined

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
VP
Xem chi tiết
TH
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
LA
Xem chi tiết
HQ
Xem chi tiết
TA
Xem chi tiết
NR
Xem chi tiết