Cho tam giac ABC can tai A, AH vuong goc voi BC tai H ; K thuoc duong thang AH. Chung minh: BK=CK
GIUP MINH VS NHAAAA!
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho tam giac ABC vuong can tai A .ke AH vuong goc voi BC tai H,BD la phan giac goc B(D thuoc AC) tu D ke duong thang vuong goc BC cat BC tai E cat AB tai F.duong thang BD cat AH tai P,cat AE tai N a CM:CP la phan giac ACB b, so sanh DE va DF c,ke CM vuong goc AE tai M .CM:BN=AM
cho tam giac ABC can co AB = AC = 5cm ; BC = 8cm . Ke AB vuong goc voi BC tai H
a, chung minh HB = HC va gocBAH = gocCAH
b, tinh do dai AH
c, ke HD vuong goc voi AB tai D. HE vuong goc voi AC tai E
chung minh tam giac HDE la tam giac can
cho tam giac ABC can tai A (AB>BC) va BD vuong goc voi AC tai B CE vuong goc voi AB tai E a.tam giac DABtam giac ADE can b. goi H la giao diem cua BD va CE. chung minh AH la tia phan giac BAC c.chung minh AH>CH
cho tam giac ABC vuong can tai A .ke AH vuong goc voi BC tai H,BD la phan giac goc B(D thuoc AC) tu D ke duong thang vuong goc BC cat BC tai E cat AB tai F.duong thang BD cat AH tai P,cat AE tai N a CM:CP la phan giac ACB b, so sanh DE va DF c,ke CM vuong goc AE tai M .CM:BN=AM
cac ban giup minh vs minh dang can gap
Cho tam giac ABC, goc A < 90 do. Ve ngoai tam giac ABC cac tam giac vuong can tai A la ABD, ACE.
a, CM : BE=CD, BE vuong goc voi CD
b, Ke AH vuong goc voi BC, AH cat DE tai K. CM : DK=KE
cho tam giác abc vuong tai a .ke ah vuong goa voi bc tai h,tia phan giac cua goc A cat BC tai D.Biet goc DAH bang 15 do.tinh cac goc cua tam giac ABC
Hình mang tính chất minh họa.
ΔAHD vuông tại H
=> \(\widehat{HAD}+\widehat{D_1}=90^o\)
=> \(\widehat{D_1}\)=75o
ΔDAB có:\(\widehat{B}+\widehat{D_1}+\widehat{BAH}=180^o\)
=> \(\widehat{B}=60^o\)(cái này bạn tự tính nha) ΔABC vuông tại A =>\(\widehat{B}+\widehat{C}=90^o\) => \(\widehat{C}\)=30O Vậy ..................... Mình làm hơi tắt, thông cảmCho tam giac ABC can tai A. Ke BD vuong goc voi AC, CE vuong goc voi AB. BD va CE cat nhau tai H. AH cat BC tai K, Tren tia HK lays diem M sap Cho K la trung diem cua HM. CM tam giac ACM vuong
Minh can gap
cho tam giac abc vuong tai a,co ab=3cm,ac=4cm.
a)tinh bc va so sanhcac goc cua tam giac abc
b)ke ah vuong goc voi bc,lay d tren bc sao cho h la trung diem cua bd.cm:tam giac abd can tai a
c)tren ah lay m sao cho h la trung diem cua am.cm:tam giac abm la tam giac can
a: BC=5cm
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
b: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABD cân tại A
cho tam giac abc can tai a(goc a nhon, ab>bc). goi h la trung diem bc
A)chung minh tam giac ahb=tam giac ahc va ah vuong goc voi bc tai h
B)goi m la trung diem cua AB. Qua A ke duong thang song song voi BC, cat tia HM tai D. Gia su AB=20cm,AD=12cm. Chung minh AD=BH. tinh do dai doan AH.
C)tia phan giac cua goc BAD cat tia CB tai N. Ke NK vuong goc voi AD tai K, NQ vuong goc voi AB tai Q. Chung minh AQ=AK va goc ANQ=45do + 1/4gocBAC
D)CD cat AB tai S. Chung minh BC < 3.AS
Cho tam giac ABC vuong can voi day BC. Goi M va N lan luot la trung diem cua AB va AC. Ke NH vuong goc voi CM tai H, HE vuong goc voi AB tai E, AK vuong goc voi HM tai K.
a, Chung minh rang: AK = HC va H la trung diem cua KC
b, Cho AH = 4 cm. Tinh dien tich tam giac ABC
c, Chung minh rang HM la phan giac goc EHB
Bạn tự vẽ hình nhé
Xét các tam giác vuông AKM và tam giác vuông CHN có
AM=NC ( bằng 1 nửa đoạn AB=AC)
Góc MAK= góc NCH ( cùng phụ với AMC)
=> \(\Delta AKM=\Delta CHN\)( cạnh huyền - góc nhọn)
=> AK=HC ( 2 cạnh tương ứng)
Ta có NH//AK( quan hệ giữa tính vuông góc và song song) (1)
Có N là trung điểm của cạnh AC (2)
Từ (1) và (2) => NH là đường trung bình của \(\Delta ACK\)
=>H là trung điểm của KC
b) Theo câu a, ta có AK=HC và KH=HC
=>AK=HC
=> AK2+KH2=AH2
=>2.AK2=16
=>AK2=8
=>AK=KH=\(\sqrt{8}\)
=>KC=2.KH=2.\(\sqrt{8}\)=\(\sqrt{32}\)
Xét tam giác vuông AKC vuông tại K có AC2=AK2+KC2
=>AC2=8+32=40
=>\(AC=AB=\sqrt{40}\)
Diện tích tam giác ABC là
\(\frac{\sqrt{40}.\sqrt{40}}{2}=\frac{40}{2}=20\) cm2
Câu c hình như sai đề
Theo cau a ta co:
goc BAK = gocACH va AK = CH
Ta CM duoc tam giac BKA = Tam giac AHC ( c . g . c )
Suy ra goc DKA = goc AHC
Ma tam giac AKH vuong tai A
Suy ra goc AHK = 45 do
Suy ra goc AHC = 135 do ( ke bu )
Hay goc AKB = 135 do
Ta co goc AKH = 90 do Suy ra goc BKH = 135 do
Hay AKB = 135 do
Ta lai co goc AKH = 90 do Suy ra BKH = 35 do
Suy ra tam giac BKA = tam gic BKM
goc BHK = goc BAK
Do HE || AC ( cung vuong goc AB )
Suy ra goc EHM = goc ACH Va goc BAK = goc ACH
Suy ra BHK = MHE
HM la tia phan giac goc EHB