Những câu hỏi liên quan
TB
Xem chi tiết
HQ
Xem chi tiết
DL
Xem chi tiết
TH
25 tháng 3 2022 lúc 22:21

*AF cắt DC tại G.

-△APE có: AE//CG (ABCD là hình bình hành) \(\Rightarrow\dfrac{AP}{PG}=\dfrac{AE}{CG}\) (hệ quả định lý Ta-let) mà \(AE=CF\left(gt\right)\) \(\Rightarrow\dfrac{AP}{PG}=\dfrac{CF}{CG}\)

-△ADG có: CF//AD (ABCD là hình bình hành) \(\Rightarrow\dfrac{CF}{AD}=\dfrac{CG}{DG}\Rightarrow\dfrac{AD}{DG}=\dfrac{CF}{CG}=\dfrac{AP}{PG}\)

*AH//DP (H thuộc DC)

△AHG có: AH//DP (gt) \(\Rightarrow\dfrac{AP}{PG}=\dfrac{DH}{DG}=\dfrac{AD}{DG}\Rightarrow DH=AD\)

\(\Rightarrow\)△ADH cân tại D. \(\Rightarrow\widehat{HAD}=\widehat{ADH}=\widehat{ADP}=\widehat{CDP}\)

\(\Rightarrow\)DP là tia phân giác của góc ADC

 

Bình luận (2)
DL
25 tháng 3 2022 lúc 22:00

Làm giúp mình với ạ mình cần tối nay ạ 

Bình luận (0)
NC
Xem chi tiết
NT
12 tháng 7 2023 lúc 9:52

a: Xét tứ giác AMCN có

AM//NC

AM=CN

=>AMCN là hình bình hành

b:

AM+MB=AB

CN+ND=CD
mà AM=CN và AB=CD

nên MB=ND

Xét tứ giác DMBN có

BM//DN

BM=DN

=>DMBN là hình bình hành

Bình luận (0)
GC
Xem chi tiết
YM
24 tháng 2 2020 lúc 10:21

( bạn tự vẽ hình nha )
a, Vì M nằm tren cạnh AB, N nằm trêm cạnh CD => AM \(//\) CN
Mà AM=CN ( Theo gt) . Do đó tứ giác AMCN là hình bình hành ( Theo đk 3)
b, Vì ABCD là hình bình hành => Góc A= Góc C
Xét 2 tam giác AMP và tam giác CNQ bằng nhau theo TH c-g-c ( Tự CM )
=> MP=NC( 2 cạnh tương ứng )(1)
CMTT 2 tam giác MBQ và NDP ta được MQ=PN (2)
Từ (1) và (2) ta có MPNQ là hình bình hành (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
GC
Xem chi tiết
LH
Xem chi tiết
YH
Xem chi tiết
NT
16 tháng 11 2021 lúc 22:07

a: Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

Bình luận (0)
H24
Xem chi tiết
PB
Xem chi tiết
CT
22 tháng 10 2019 lúc 6:42

Tâm đối xứng của hình bình hành ABCD là giao điểm O của các đường chéo AC và BD.

Bình luận (0)