Những câu hỏi liên quan
NC
Xem chi tiết
NT
11 tháng 5 2022 lúc 22:53

a: EF=5cm

b: Xét ΔMDF vuông tại D và ΔMDC vuông tại D có 

MD chung

FD=CD

Do đó:ΔMDF=ΔMDC

c: Xét ΔECF có 

ED là đường cao

ED là đường trung tuyến

Do đó;ΔECF cân tại E

Bình luận (0)
VH
11 tháng 5 2022 lúc 23:02

tham khảo

a: EF=5cm

b: Xét ΔMDF vuông tại D và ΔMDC vuông tại D có 

MD chung

FD=CD

Do đó:ΔMDF=ΔMDC

c: Xét ΔECF có 

ED là đường cao

ED là đường trung tuyến

Do đó;ΔECF cân tại E

Bình luận (0)
NC
Xem chi tiết
NT
12 tháng 5 2022 lúc 7:00

a: EF=5cm

b: Xét ΔMDF vuông ạti D và ΔMDC vuông tại D có

MD chung

DF=DC

DO đo: ΔMDF=ΔMDC

c: Xét ΔECF có 

ED là đường cao

ED là đường trung tuyến

Do đó: ΔECF cân tại E

Bình luận (0)
TL
Xem chi tiết
NT
27 tháng 2 2021 lúc 20:13

a) Xét ΔABD vuông tại D và ΔACD vuông tại D có 

AB=AC(ΔABC cân tại A)

AD chung

Do đó: ΔABD=ΔACD(cạnh huyền-cạnh góc vuông)

Suy ra: DB=DC(hai cạnh tương ứng)

Bình luận (0)
TL
Xem chi tiết
NT
27 tháng 2 2021 lúc 22:02

a) Xét ΔADB vuông tại D và ΔADC vuông tại D có 

AB=AC(ΔABC cân tại A)

AD chung

Do đó: ΔADB=ΔADC(cạnh huyền-cạnh góc vuông)

Suy ra: DB=DC(Hai cạnh tương ứng)

b) Ta có: ΔADB=ΔADC(cmt)

nên \(\widehat{BAD}=\widehat{CAD}\)(hai góc tương ứng)

hay \(\widehat{EAD}=\widehat{FAD}\)

Xét ΔEAD vuông tại E và ΔFAD vuông tại F có 

AD chung

\(\widehat{EAD}=\widehat{FAD}\)(cmt)

Do đó: ΔEAD=ΔFAD(cạnh huyền-góc nhọn)

Suy ra: AE=AF(Hai cạnh tương ứng)

Xét ΔAEF có AE=AF(cmt)

nên ΔAEF cân tại A(Định nghĩa tam giác cân)

Bình luận (0)
BT
Xem chi tiết
NA
9 tháng 8 2017 lúc 20:00

đề bài kiểu j vậy

C ở đâu

Bình luận (0)
HK
Xem chi tiết
HT
14 tháng 4 2020 lúc 21:14

a) Xét tam giác DEH và tam giác DFH ta có:

        DE = DF ( tam giác DEF cân tại D )

        DEH = DFH ( tam giác DEF cân tại D )

        EH = EF ( H là trung điểm của EF )

=> tam giác DEH = tam giác DFH ( c.g.c) (dpcm)

=> DHE=DHF(hai góc tương ứng)

Mà DHE+DHF=180 độ  =>DHE=DHF=180 độ / 2 = 90 độ ( góc vuông ) hay DH vuông góc với EF ( dpcm )

 b) Xét tam giác MEH và tam giac NFH ta có:

          EH=FH(theo a)

          MEH=NFH(theo a)

  => tam giác MEH = tam giác NFH ( ch-gn)

  => HM=HN ( 2 cạnh tương ứng ) hay tam giác HMN cân tại H ( dpcm )

c) Ta có : +) DM+ME=DE =>DM=DE-ME

                +) DN+NF=DF => DN=DF-NF

Mà DE=DF(theo a)   ;     ME=NF( theo b tam giác MEH=tam giác NFH)

=>DM=DN => tam giác DMN cân tại D 

Xét tam giac cân DMN ta có:

     DMN=DNM=180-MDN/2      (*)

Xét tam giác cân DEF ta có:

     DEF=DFE =180-MDN/2       (*)

Từ (*) và (*) Suy ra góc DMN = góc DEF

Mà DMN và DEF ở vị trí đồng vị

=> MN//EF (dpcm)

d) Xét tam giác DEK và tam giác DFK ta có:

        DK là cạnh chung

        DE=DF(theo a)

    => tam giác DEK= tam giác DFK(ch-cgv)

   =>DKE=DKF(2 góc tương ứng)

   =>DK là tia phân giác của góc EDF       (1)

Theo a tam giac DEH= tam giac DFH(c.g.c)

   =>EDH=FDH(2 góc tương ứng)

   =>DH là tia phân giác của góc EDF        (2)

Từ (1) và (2) Suy ra D,H,K thẳng hàng (dpcm)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NH
8 tháng 4 2021 lúc 20:12

A) XÉT ΔDHE VÀ ΔDHF, CÓ

DE=DF (ΔDEF CÂN TẠI D)

\(\widehat{E}=\widehat{F}\) (ΔDEF CÂN TẠI D)

⇒ ΔDHE = ΔDHF (C.HUYỀN-G.NHỌN)

\(\widehat{EDH}=\widehat{FDH}\) (2 GÓC T.ỨNG)

 

 

Bình luận (0)
NH
8 tháng 4 2021 lúc 21:42

TA CÓ : EN=\(\dfrac{1}{2}\)DE 

MÀ : DE=DF

⇒EN=FM                                                                  B) XÉT ΔNEF VÀ ΔMFE CÓ

EF: CHUNG

\(\widehat{E}=\widehat{F}\)( TAM GIÁC DEF CÂN TẠI D)

EN=FM (CMT)

⇒ΔNEF = ΔMFE (C-G-C)

⇒EM=FN (2 CẠNH TƯƠNG ỨNG)

C) TA CÓ : EH=FH (ΔDHE=ΔDHF)

MÀ : EF=8

⇒DH LÀ TRUNG ĐIỂM CỦA EF

⇒EH=\(\dfrac{1}{2}EF\) = \(\dfrac{1}{2}\) .8 = 4

⇒EH=4 

TRONG ΔDHE VUÔNG TẠI H

\(DE^2=HE^2+DH^2\) (ĐỊNH LÝ PTG)

\(5^2=4^2+DH^2\)

\(DH^2\)=25-16

\(DH^2\) = 9

⇒DH=\(\sqrt{9}\)=3

 

Bình luận (0)
NH
8 tháng 4 2021 lúc 22:00

D) TA CÓ : DN=\(\dfrac{1}{2}\)DE

DM=\(\dfrac{1}{2}\)DF

MÀ : DE=DF

⇒DN=DM

⇒ΔDNM CÂN TẠI D

TA CÓ : \(\widehat{D}+\widehat{N}+\widehat{M}=180\)

MÀ: \(\widehat{M}=\widehat{N}\)

\(\widehat{D}+\widehat{2N}=180\)

\(\widehat{N}=\dfrac{180-\widehat{D}}{2}\)

TA CÓ : \(\widehat{D}+\widehat{E}+\widehat{F}\) =180

MÀ : \(\widehat{E}=\widehat{F}\)

\(\widehat{D}+\widehat{2E}=180\)

\(\widehat{E}=\dfrac{180-\widehat{D}}{2}\)

\(\widehat{DNM}=\widehat{DEF}\) (ĐỒNG VỊ)

⇒MN//EF

Bình luận (0)
BT
Xem chi tiết
LH
Xem chi tiết
NT
30 tháng 3 2021 lúc 21:34

a) Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:

\(EF^2=DE^2+DF^2\)

\(\Leftrightarrow EF^2=9^2+12^2=225\)

hay EF=15(cm)

Vậy: EF=15cm

Bình luận (0)
IC
30 tháng 3 2021 lúc 22:02

a) Xét tam giác EDF có: EF2 = DE2 + DF(đ/lí py-ta-go)

                                         =>  EF= 9+ 122

                                                 =>  EF2 = 81 + 144 = 225

                                         =>  EF = 112,5 cm

Bình luận (0)
IC
30 tháng 3 2021 lúc 22:08

b) Xét tam giác DEM và tam giác DEF có :

EDM = EDF = 1v            

ED chung                                     

DM = DF (gt)                   

=> tam giác DEM = tam giác DEF (c.g.c) hay (c/huyền+c/góc vuông)

 

Bình luận (0)